
A Coalition-Based Metaheuristic for the
Vehicle Routing Problem

David Meignan Jean-Charles Créput Abderrafiâa Koukam

Abstract— This paper presents a population based Meta-
heuristic adopting the metaphor of social autonomous agents.
In this context, agents cooperate and self-adapt in order
to collectively solve a given optimization problem. From an
evolutionary computation point of view, mechanisms driving
the search consist of combining intensification operators and
diversification operators, such as local search and mutation or
recombination. The multiagent paradigm mainly focuses on the
adaptive capabilities of individual agents evolving in a context
of decentralized control and asynchronous communication. In
the proposed metaheuristic, the agent’s behavior is guided by a
decision process for the operators’ choice which is dynamically
adapted during the search using reinforcement learning and
mimetism learning between agents. The approach is called
Coalition-Based Metaheuristic (CBM) to refer to the strong
autonomy conferred to the agents. This approach is applied to
the Vehicle Routing Problem to emphasize the performance of
learning and cooperation mechanisms.

I. INTRODUCTION

This paper introduces the Coalition-Based Metaheuristic
(CBM) which combines Evolutionary Algorithm (EA) and
Distributed Artificial Intelligence (DAI) principles.

Classical EA approaches are based on a centralized control
implicitly stated in the outer loop which synchronizes the se-
quential application of operators to a population of candidate
solutions, e.g. the selection operator may be considered as
a centralized supervisor [1]. The CBM adopts a different
perspective based on a fully decentralized approach. Indeed,
individuals which usually encapsulate a single solution are
considered as agents that are organized in a group, called
a coalition. In comparison to simple EA individuals, these
agents have additional capacities of decision, learning and
cooperation. The coalition contains agents with identical
capacities which cooperate by the mean of direct peer-to-peer
interaction. This type of decentralized structure is intended
to support robustness since the removal or addition of any
agent do not perturb the global functioning of the system.

DAI, especially multiagent systems, appears as a promis-
ing field of research to tackle robustness and modularity
in metaheuristics. Indeed, multiagent and metaheuristic ap-
proaches are tightly linked because they share the use of
social metaphor and self-organization paradigm [2], [3], [4].
However, few approaches such as the Co-Search [5] and
MAGMA [6] explicitly use multiagent concepts in the field

David Meignan, Jean-Charles Créput and Abderrafiâa Koukam
are with the Systems and Transport Laboratory of the University
of Technology of Belfort-Montbéliard, 90010 Belfort cedex,
France; Email: david.meignan@utbm.fr, jean-charles.creput@utbm.fr,
abder.koukam@utbm.fr.

of metaheuristics. They justify their use by (i) the distribu-
tion and robustness inherent to multiagent systems, (ii) the
contribution in terms of flexibility and modularity. The aim
of this paper is to propose a new metaheuristic combining
the advantages of both multiagent and metaheuristic fields.
This metaheuristic is applied to the Vehicle Routing Problem
(VRP).

The VRP is a well-known problem in the field of trans-
portation and logistics. This problem has been widely studied
since five decades. Its common formulation has been pro-
posed by Dantzig and Ramser in [7]. It consists in finding a
set of optimal routes that serve a given set of customers.

The VRP is defined on a graph G(V,E) where V =
{v0, ..., vn} is a set of vertices and E = {(vi, vj)/vi, vj ∈
V ; i 6= j} represents a set of edges. The vertex v0 corre-
sponds to the depot while remaining vertices are customers.
A quantity qi of some goods to be delivered by a vehicle and
a service time δi required by a vehicle to unload the quantity
qi at vi is associated to each vertex vi, i ∈ {1, ..., n}. A cost
or length ci,j is associated to each edge (vi, vj). A feasible
solution corresponds to a set R of m vehicle routes such that,
(i) each route starts and ends at the depot, (ii) each customer
is visited exactly once, (iii) the total demand of any route
does not exceed the vehicle capacity Q and (iv) the duration
of any route does not exceed a bound D. The objective is to
minimize the total travel time.

The VRP is NP-hard and can rarely be solved exactly for
a number of customers exceeding 100. Several heuristics and
metaheuristics have been proposed for the VRP. Surveys on
these methods can be found in [8], [9].

This paper is organized as follows. Section II presents
the CBM and its main components. Section III reports
experiments carried out on the capacitated VRP and focuses
on the influence of learning and cooperation mechanisms.
Finally, the last section is devoted to the conclusion and
further research.

II. THE COALITION-BASED
METAHEURISTIC

A. Method principles

The term “coalition”, drawn from [4], [10], refers to an
organization where agents have the same capacities and
cooperate by the mean of direct interactions. Here, the CBM
is the name of a multiagent metaheuristic. The main features
of this metaheuristic are a decentralized control and the use
of individual and collective learning mechanisms. The CBM
is strongly related to Memetic Algorithms (MA) [11], [12],
[13] and EA since it is a population-based metaheuristic



which uses the metaphor of collective evolution. Each agent
or individual manages a solution and performs a search
with several intensification and diversification operators. In-
tensification operators refer to improvement processes such
as local search, and diversification operators correspond to
generation, mutation or crossover operators.

In CBM the coalition is composed of a fixed number of
identical agents. An agent manages a current solution and
iteratively applies operators on this solution. The sequential
algorithm implementing CBM consists in activating each
agent of the coalition. The CBM loop is summarized in
the algorithm 1. In this algorithm the activation of all
agents is done at each iteration. The only assumption about
synchronization between agents is that they must act at a
similar rate in order to ensure the collective behavior. No
explicit synchronization between agents is needed. An agent
can perform a local search while an other one could, at the
same time, apply a mutation operator.

Algorithm 1 CBM algorithm
1: Initialize the coalition.
2: while stopping criterion is not reached do
3: for each agent A in the coalition do
4: Activate agent A.
5: end for
6: end while

The main features of an agent in the coalition are a
decision process, some learning mechanisms and cooperation
means. These elements are reported in figure 1. The choice of
an operator is made by a decision process that considers the
optimization context. The term “context” is used to describe
environmental and agent-related features that can support the
decision of an agent. The behavior of an agent is adapted
during the optimization by learning mechanisms. In addition,
agents can cooperate by two ways. In one hand, an agent
shares its best known solution. This solution can be exploited
by other agents with crossover operators. This cooperation is
intended to guide the search through new promising region
of the search space. In another hand, an agent can share
its internal decision rules in order to allow mimetism of
behavior. This second cooperation mechanism is intended to
favor the decision process behaviors that often found new
best solutions.

A basic agent iteration, presented in algorithm 2, is com-
posed of four steps: perception, learning, deliberation, and
action. The perception allows to characterize the optimization
context by computing the current state of the agent and pos-
sibly finding an agent to imitate. Then, the learning consists
in the adaptation of the agent behavior by reinforcement
and mimetism learning. The deliberation corresponds to the
choice of an operator to apply. Finally, the action corresponds
to the effective application of the operator.

In the next two sections we detail the decision process and
the learning mechanisms related to a CBM agent.

Fig. 1. CBM agent architecture

Algorithm 2 CBM agent iteration
1: Compute the current state s.
2: Decide of an operator o to apply considering s.
3: Learn by reinforcement and mimetism.
4: Apply the operator o.

B. Decision process

The decision process allows to select an operator according
to the optimization context. The different actions of an agent
refer to the set of operators, and the optimization context
is characterized by a set of states. In order to perform the
selection of operators we use the mechanism described in
[14], which has some similarity with the Holland Classifier
Systems [15], and which is based on a set of condition/action
rules. Lets S be the set of states, O the set of operators. For
a state si a weight wi,j is associated to each operator oj .
The weight wi,j corresponds to the potential of execution
of the operator oj in the state si. The effective choice of an
operator is performed by a roulette wheel selection principle.
Thus, the probability P (oj |si) to apply the operator oj in the
state si is computed using the following formula.

P (oj |si) =
wi,j∑m

k=1 wi,k
(1)

With:
S : (si)i=1,...,n Set of states
O : (oj)j=1,...,m Set of operators
W : (wi,j)i=1,...,n;j=1,...,m Weight matrix

Initialization of the weight matrix is made with the param-
eter α that corresponds to the initial weight. To restrain the
behavior of an agent, the weights that correspond to undesir-
able actions are set to zero. Then, during the optimization,
a learning process will adjust the weights according to the
past experiences of the agent.

The determination of the set of states is an important step
of the design of the algorithm. A state must well characterize
the optimization context to take an appropriate decision.
Here, the number of states is limited to a number of exclusive
conditions characterizing the current step. Considering that
an agent has many operators, we have chosen to define the



Fig. 2. Example of a decision process

state of an agent by reference to the last operator applied to
its current solution. When an agent applies the operator oi,
the state “oi finished” is reached. Thus, the state of an agent
represents information about its current solution and about
the progress of the optimization process. This definition of
states and actions allows an agent to adapt the ordering of
the applied operators.

The decision process of an agent can be represented by
a finite state probabilistic automaton as reported in figure 2.
In this example an agent can perform three actions: a1, a2

and a3. The resulting states are “a1 finished”, “a2 finished”
and “a3 finished”. In a particular state, an agent chooses the
next action considering the weights. For instance, in state
“a2 finished” the agent can perform actions a1 and a3 which
have respectively a weight of 8 and 2. Thus, the probability
to perform the action a1 in the state “a2 finished” is of
80%. Moreover, in the state “a2 finished” the agent can not
apply action a2. This restriction corresponds to a null weight:
wa2,a2finished = 0.

Furthermore, to avoid unnecessary reapplication of a given
operator, the last applied rule is inhibited until a new im-
provement of the current solution occurs. When all operators
have successively failed to improve a given solution, a
special state “local optimum” is reached. This state indicates
that the solution has reached a local optimum common to
all the intensification operators considered, i.e. no intensi-
fication operator can improve the solution. This particular
state defines the point where reinforcement learning can
take place. The past sequence of the applied rules, since
the last diversification step, is then considered for possible
reinforcement learning. Then, a new cycle of diversification
followed by intensification takes place.

C. Learning mechanisms

The agents use two learning mechanisms to adjust their be-
haviors, reinforcement learning and mimetism learning. The
reinforcement learning is realized during the optimization
search in order to favor the sequences of operators which
have a positive impact on solution improvement. Since at
the beginning of the search, all intensification operators may
improve the solution, all the sequences where they appear

may be reinforced. Whereas, as the optimization process
will progress, it could be the case that only particular order
of operator applications will have some positive impact on
solution quality. In that case, only such sequences will be
reinforced. The mimetism mechanism consists of sharing the
decision weight matrix between agents. It can be seen as a
recombination operation operating at the meta level of the
decision process. A given initiator agent of the interaction
modifies its weight matrix considering the best performing
agent it founds by a complete examination of the agent
coalition.

1) Reinforcement learning: In [16] the authors define
reinforcement learning as “the problem faced by an agent
that must learn behavior through trial-and-error interactions
with a dynamic environment”. The two major features of
reinforcement learning reported in [17] are: trial-and-error
search and delayed reward.

In our case, an agent adjusts its behavior once performed a
sequence of actions, starting from a diversification step that
has conducted its solution into a common local minimum
according to all the different intensification operators. Several
sequences of operators are tested during the optimization
thanks to the roulette wheel selection principle. A rein-
forcement learning is performed only when the agent find
a solution better than its previous best found solution. In
this case, the action plan (sequence of operators) which
conducted the agent to find this solution is reinforced. Within
the decision model previously presented, an experience is a
pair state/operator (si; oj) and the reinforcement corresponds
to an augmentation of the related weight value wi,j . This
mechanism is intended to favor the behaviors that often find
new best solutions.

To perform the reinforcement learning, it is necessary to
identify the beneficial experiences and assign them a reward.
This problem is known as the Credit Assignment Problem.
It is difficult to evaluate the efficiency of a given operator
immediately after its application since it may depend on
the order of application of other operators. Thus, beneficial
experiences are identified from the observation of an action
sequence performed by the agent. A reinforcement is realized
when the current solution fitness is better than the one’s
of the best previously obtained solution of the agent. The
experiences from the last diversification operator application
to the current state are reinforced.

Figure 3 presents a typical case where the reinforcement
learning is applied. The cost of the best found solution
and the current solution are plotted. After the application
of a diversification operator (o3) and several intensification
operators (o1, o2), the agent improves the cost of its best
found solution. Then, a reinforcement is applied on the
experiences (local optim.; o3), (o3 finished; o1) and (o1

finished; o2).
In order to refine the reinforcement learning, two cases

are distinguished, (i) when the agent improves its best found
solution, and (ii) when the agent improves the best known
solution value it previously obtained during its past interac-



Fig. 3. Case of reinforcement learning.

tions with other agents. The reinforcement factors σ1 and σ2

are respectively used for the two types of reinforcement. The
reinforcement is performed using the formula (2).

wi,j = wi,j + σ (2)

With:
(si; oj) Experience to reinforce
wi,j Weight related to the experience
σ : {σ1;σ2} Reinforcement factor

2) Mimetism learning: In the coalition-based metaheuris-
tic, agents perform reinforcement learning individually. The
mimetism learning [18] allows cooperation between agents
in order to share the behaviors already enhanced by the
reinforcement learning.

The mimetism learning works on the assumption that an
agent imitates the behaviors of the most efficient agents. At
each cycle, the agent examines the fitness value of the best
solution found by each other agent of the coalition. When an
agent A observes that the agent B has found the best solution
value, the agent A imitates the behavior of the agent B. Lets
WA be the weight matrix of agent A and WB the weight
matrix of agent B, the imitation corresponds to the adoption
by agent A of a weight matrix equal to the weighted mean
of WA and WB . The imitation is computed as follow:

WA = (1 − ρ).WA + ρ.WB (3)

With:
WA Weight matrix of the imitator agent
WB Weight matrix of the imitated agent
ρ Mimetism rate

The combination of reinforcement learning and mimetism
learning allows to introduce adaptation and self-adaptation
into the population based search, and then to enhance in-
dividual and global behavior. An agent exploits its past
experiences in order to improve its capacity to find new
best solutions, but it also shares its experiences in order to

collectively ensure a better choice of actions in the future.
The reinforcement learning allows to improving the local
behavior. However, imitation learning permits to exploit the
search strategies developed by the other agents.

D. Specializing CBM for solving the Vehicle Routing Prob-
lem

The specialization of CBM for a particular optimization
problem necessitates to define the diversification and inten-
sification operators. The operators used in our approach are
drawn from Operations Research and Evolutionary Algo-
rithms. Generation, crossover and mutation operators per-
form the diversification task. Several standard local search
heuristics are used as intensification operators.

1) Generation operators: Initial solutions are obtained
by generation operators. These operators are also used as
diversification operators during optimization. Two different
operators are used: greedy insertion algorithm and sweep
algorithm.

The greedy insertion algorithm gradually builds the routes
by selecting randomly an unserved customer and by inserting
it at minimum cost in existing routes. Insertion of a customer
is performed by considering the capacity and the duration
constraints.

The sweep algorithm has been introduced by Wren and
Holliday in [19]. It consists in constructing sequentially
the routes from an ordered set of customers. The order of
customers is obtained by rotating a ray centered at the depot.
Each customer is then inserted in the current route while the
capacity or the maximal route length is not exceeded.

2) Crossover operators: Two crossover operators are
used: route insertion crossover and order crossover. They are
applied in a random way. A given agent randomly chooses
a mating agent, and replaces its embedded solution by the
new offspring solution generated.

In route insertion crossover, an offspring is created by
inserting a route from one solution to an other solution. To
obtain a valid solution without duplication of customers, each
customer in the inserted route is removed from other routes.

The order crossover (OX) [20] is a Two-point crossover
where the offspring tends to inherit the relative order of the
customers on the parent routes.

3) Mutation operators: A simple Remove-And-Reinsert
(RAR) procedure is used as a mutation operator. It consists in
randomly removing then reinserting one or several customers
in such a way that the capacity and the duration constraints
are satisfied.

4) Intensification operators: Four different local search
operators are used for the purpose of intensification: 2-opt,
3-opt, 1-move and 1-swap heuristics.

The 2-opt and 3-opt heuristics are special case of λ-opt
heuristics [21]. This heuristic, originally proposed for the
Traveling Salesman Problem (TSP), is applied to individual
routes in the VRP. The λ-opt heuristics is a local search,
where at each step λ edges of the current route are replaced
by λ other ones in such a way that a shorter route is obtained.
A route is said λ-opt optimal if it is impossible to obtain a



shorter one by replacing any λ of its edges by any other set
of λ edges.

The 1-move and 1-swap heuristics are based on λ-
interchange mechanisms [22] which involve two vehicle
routes. The 1-move heuristic, also known as 1-String Reloca-
tion heuristic, is a local search where one customer is moved
from one route to another route. The 1-swap heuristic, also
known as 1-String Exchange heuristic, consists of a local
search where two customers in different routes are swapped.

III. COMPUTATIONAL RESULTS

The application of the coalition based metaheuristic to the
vehicle routing problem has been tested on the 14 instances
described in Christofides et al. [23]. These instances contain
between 50 and 199 customers in addition to the depot. Half
of the instances have only capacity constraint, and the other
ones have in addition a time duration constraint. The CBM
has been implemented in Java and tested on a Pentium 4 at
3GHz. with 1Gb. of memory.

The following experiments are performed to assess the
improvement of performances resulting from the learning
mechanisms proposed, according to different sizes of the
population, and to evaluate the performances of the approach
against some of the powerful heuristics of Operations Re-
search.

The parameter setting of the CBM is given in table I. The
values used for computational experiments are also reported.
In addition to these parameters, the behavior of an agent
can be restricted thanks to a particular initialization of the
decision process. It is possible to disable the undesirable
actions of an agent by setting the corresponding weights
to zero in the weight matrix W. For example, we force an
agent to only apply intensification operators until its solution
reaches a local optimum. As well, an agent can not apply a
diversification operator subsequently to another diversifica-
tion operator, but must necessarily apply an intensification
operator.

TABLE I
CBM PARAMETERS

Parameter Description Value
α Initial operator weight value 5

σ1; σ2 Rewards for reinforcement learning 1;2
ρ Mimetism rate 0.4
C Number of agents in the coalition 15

A. Performance of reinforcement learning and mimetism

Starting with a referential version of the algorithm with
no learning mechanism, we successively introduce the rein-
forcement learning and the mimetism learning and evaluate
the deviation of the average route length to the best known
solution values reported in [24].

The CBM has been experimented for different coalition
sizes between 1 to 20 agents on the 14 Christofides instances.
To make the evaluation fair, the total number of iterations
performed by the agents was fixed, and remained constant,

Fig. 4. Impact of the learning and the coalition size on the quality of the
solution

for all the tests to 10, 000 iterations. Thus, in a coalition
with C agents, a single agent performs 10, 000/C iterations.
The computation time allowed for each configuration of the
algorithm was approximately of 30 seconds, the introduction
of the learning mechanisms and the augmentation of the
population size having a negligible impact on this value.

For each coalition size, CBM is executed 10 times for each
of the 14 instances. The average percentage deviations to the
best known values are reported in Figure 4. Three different
configurations are considered. The first one corresponds to a
coalition of agents without Reinforcement Learning (RL) and
no mimetism. In this case, the only cooperation mechanism is
provided by the standard crossover operators. In the second
configuration, the agents have the capacity to individually
learn by reinforcement. In the third configuration, both indi-
vidual and collective learning by mimetism are considered.

It can be observed on the figure that the additional learning
capacities improve the quality of the solutions found. In
addition, the improvement already carried out by using
learning seems to be more pronounced when the population
size increases, particularly by using the mimetism learning.
Beyond 15 agents, the computational results are slightly
deteriorated. This can be explained by the small number of
iterations performed by a single agent. The experimentations
illustrate the contribution of the cooperation in CBM.

Figure 5 plots the average costs for a population size of
15 agents, according to the number of iterations performed
by a single agent (10, 000/15). We can see that the benefice
of learning appears when the iteration number grows. While
at the beginning of the run, the different configurations yield
similar and undifferentiated improvements, as the run goes
on, a difference appears on the length minimization in favor
of the learning configurations. This can be explained by the
fact that all operators may have a positive impact at the earlier
stages of the search, whereas the system progressively learns
the good order of operator applications as the search evolves
toward near-optimal solutions, from the middle to the end of
the run. As illustrated in the figure 5, these trials cast a light



Fig. 5. Progress of the average cost for a population size of 15 agents on
the Christofides instance 10

on the improvements carried out by the cooperating learning
mechanisms.

B. Evaluation against Operations Research heuristics

Here, we evaluate the CBM approach against two powerful
Operations Research heuristics presented in the survey of
Cordeau et al. [24]. We compare performances with two tabu
search approaches: the Granular Tabu Search (GTS) [25], and
the Unified Tabu Search Algorithm (UTSA) [26]. We use
the results reported in [24]. These approaches are selected
because they are considered as being ones of the most
simple and flexible approaches in the literature. We think
that they are the better choice for comparison since CBM
also addresses simplicity and flexibility by offering three
independent levels of modeling, that are the learning level,
the population based metaheuristic level with cooperation,
and the problem-dependant heuristic level.

The computational results are presented in Table II. For
each problem, 10 runs are performed and the average and
best solution found are considered. The first four columns
respectively give the problem name, the type of constraints,
the number of customers and the best known solution value
taken from [24]. In the constraints type column, the “C”
indicates a capacity constraint, and the “D” indicates a
duration constraint. The columns 5 to 8 respectively report
the average deviation of the cost, given in pourcentage, to
the best known value, the best found value over the 10 runs,
the standard deviation, and the computation time per run in
minutes. The other columns report the average route length
deviation and the computation time in minutes respectively
for the two other approaches. The GTS was evaluated on a
Pentium (200 MHz), and the UTSA on a Pentium 4 (2 GHz).
Our experiments were performed on a Pentium 4 (3 GHz)
with a Java program.

The results indicate that our CBM approach is not yet
competitive to the powerful Operations Research heuris-
tics. Nevertheless, while considering the different materials

used, with an average deviation of 2.47 % and an aver-
age computation time of 0.5 minute per run, CBM is not
clearly dominated, on both quality and computation time,
by the UTSA, which yields 0.56 % of deviation in roughly
25 minutes. On the contrary, to be competitive with the
GTS, solution quality produced by the CBM, as well as
computation time, would have to be improved both by a
factor at least 5. However, it is worth noting that, in a first
attempt, we use a naive implementation of the operators.
We did not use implementation tricks such as candidate
lists, don’t look bits, or k-d trees which generally have a
great impact on computation times and then on the overall
performances. This point is illustrated here by considering
the UTSA which is very slow and the GTS which is very fast.
This is because the latter uses such implementation tricks,
whereas not the former, for example by eliminating edges
having an important cost. It is often the case that the most
powerful approaches are also the most complicated ones.
Such an example is the Active Guided Evolution Strategy
(AGES) [27] which is, at the date of writing, the overall
winner considering both solution quality and computation
time, but which is considered complicated to implement and
understand [24].

IV. CONCLUSION

In this paper we have proposed a multiagent metaheuristic,
merging some of the evolutionary algorithm concepts into a
context of distributed control and agent-based learning. The
metaphor of individuals being evolved and subject to the pro-
cess of natural selection becomes a metaphor of autonomous
agents learning and cooperating, and thus making evolve
their embedded candidate solutions in order to intentionally
solve a given problem.

In CBM, several agents organized in a coalition treat si-
multaneously the optimization problem with identical search
capacities. Each agent manages a current solution and per-
forms a search by applying intensification and diversification
operators. An agent uses a decision process based on a
roulette wheel selection principle to determine the operator
to apply. The behavior of an agent is adapted during the
search by a reinforcement learning mechanism. In addition,
the agents can cooperate in two ways: solution sharing and
mimetism. Agents have the same status. They are entities
with their own local memory and communicating through
an asynchronous network. In that way, parallelization of
the approach may be facilitated and robustness according to
injuries enhanced.

In this paper the efficiency of CBM was illustrated thanks
to its application to the Vehicle Routing Problem. The
computational results put forward the performances of the re-
inforcement learning and of the mimetism cooperating mech-
anism. In further works, performance should be improved by
a better implementation of the standard problem-dependant
operators. Also, many other learning approaches, for example
artificial neural networks, and not yet considered into the
context of adaptive search in combinatorial optimization, will
merit a thorough examination.



TABLE II
COMPUTATIONAL RESULTS FOR THE CHRISTOFIDES INSTANCES

CBM UTSA GTS
Instance Type Size Best known % Average % Best St. Dev. Time (min.) % Best Time (min.) % Best Time (min.)

1 C 50 524.61 0.00 0.00 0.00 0.06 0.00 2.32 0.00 0.81
2 C 75 835.26 1.07 0.06 0.77 0.12 0.00 14.78 0.40 2.21
3 C 100 826.14 0.38 0.15 0.19 0.31 0.00 11.67 0.29 2.39
4 C 150 1 028.42 1.71 0.73 0.44 0.64 0.41 26.66 0.47 4.51
5 C 199 1 291.26 4.05 2.86 0.80 1.10 1.90 57.68 2.09 7.50
11 C 120 1 042.11 14.56 13.86 0.60 0.40 3.01 11.67 0.07 3.18
12 C 100 819.56 1.53 0.19 1.08 0.30 0.00 9.02 0.00 1.10
6 C, D 50 555.43 0.02 0.00 0.07 0.12 0.00 3.03 0.00 0.86
7 C, D 75 909.68 0.32 0.00 0.33 0.25 0.00 7.41 1.21 2.75
8 C, D 100 865.94 0.26 0.00 0.31 0.47 0.00 10.93 0.41 2.90
9 C, D 150 1 162.55 2.55 1.58 1.03 1.25 0.46 51.66 0.91 5.67
10 C, D 199 1 395.85 3.39 2.23 0.85 1.98 1.50 106.28 2.86 9.11
13 C, D 120 1 541.14 4.65 1.56 2.20 0.80 0.53 21.00 0.28 9.34
14 C, D 100 866.37 0.08 0.00 0.21 0.39 0.00 10.53 0.00 1.41

Average C 3.33 2.55 0.55 0.42 0.76 19.11 0.47 3.10
Average C, D 1.61 0.77 0.72 0.75 0.36 30.12 0.81 4.58

Average 2.47 1.66 0.63 0.58 0.56 24.62 0.64 3.84

REFERENCES

[1] M. Tomassini, “Parallel and Distributed Evolutionnary Algorithms :
a Review”, Evolutionary Algorithms in Engineering and Computer
Science, pp. 113–133, 1999.

[2] J. C. Créput, A. Koukam, “Self-Organization in Evolution for the Solv-
ing of Distributed Terrestrial Transportation Problems”, Softcomputing
applications in industry, B. Prasad (eds.), pp. 189–205, Springer-Verlag,
2008.

[3] E. H. Durfee, “Distributed Problem Solving and Planning”, In Gerhard
Weiss (eds.),Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence, pp. 121–164, 1999.

[4] J. Ferber, “Multi-agent Systems : An Introduction to Distributed Arti-
ficial Intelligence”, Addison Wesley, 1999.

[5] E. Talbi and V. Bachelet, “COSEARCH: A Parallel Co-evolutionary
Metaheuristic”, In proc. First int. workshop on Hybrid Metaheuritics,
pp. 127–140, 2004.

[6] M. Milano and A. Roli, “MAGMA: a multiagent architecture for
metaheuristics”, IEEE Trans. on Systems, Man and Cybernetics, Part
B, vol. 34, pp. 925–941, 2004.

[7] G. B. Dantzig and J. H. Ramser “The Truck Dispatching Problem”,
Management Science, vol. 6, no. 1, pp. 80–91, 1959.

[8] J. F. Cordeau, M. Gendreau, G. Laporte, J-Y. Potvin and F. Semet,
“A guide to vehicle routing heuristics”, Journal of the Operational
Research Society, vol. 53, pp. 512–522, 2002.

[9] M. Gendreau, G. Laporte and J-Y. Potvin, “Metaheuristics for the
capacitated VRP”, In P. Toth and D. Vigo (eds.), The Vehicle Routing
Problem, Chapter 6, pp. 129–154, 2002.

[10] H. V. D. Parunak, S. Brueckner, M. Fleischer and J. Odell, “A design
taxonomy of multi-agent interactions”, AOSE 2003, Lecture notes in
computer science, vol. 2935, no. 4, pp. 123–137, 2003.

[11] N. Krasnogor and J. Smith, “A Tutorial for Competent Memetic
Algorithms: Model, Taxonomy, and Design Issues”, IEEE Trans. on
Evolutionary Computation, pp. 474–488, vol. 9, 2005.

[12] P. Merz and B. Freisleben, “Memetic Algorithms for the Traveling
Salesman Problem”, Complex Systems, vol. 13, pp. 297–345, 2001.

[13] P. Moscato and C. Cotta, “A Gentle Introduction to Memetic Algo-
rithms”, In F. Glover, G. Kochenberger (eds.), Handbook of Metaheuris-
tics, Kluwer Academic Publishers, pp. 105–144, 2003.

[14] S. Ropke and D. Pisinger, “An Adaptive Large Neighborhood Search
Heuristic for the Pickup and Delivery Problem with Time Windows”,
Transportation Science, vol. 40, no. 4, pp. 455–472, 2006.

[15] J. H. Holland, L. B. Booker, M. Colombetti, M. Dorigo, D. E.
Goldberg, S. Forrest, R. L. Riolo, R. E. Smith, P. L. Lanzi, W.
Stolzmann and S. W. Wilson, “What Is a Learning Classifier System?”,
Lecture Notes In Computer Science, vol. 1813, pp. 3–32, 2000.

[16] L. P. Kaelbling M. L. Littman and A. W. Moore, “Reinforcement
Learning: A Survey”, Journal of Artificial Intelligence Research vol. 4,
pp. 237–285, 1996.

[17] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduc-
tion”, MIT Press, 1998.

[18] T. Yamaguchi, Y. Tanaka and M. Yachida, “Speed up reinforce-
ment learning between two agents with adaptive mimetism”, In proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 594–600,
1997.

[19] A. Wren and A. Holliday, “Scheduling of Vehicles from One or
More Depots to a Number of Delivery Points”, Operational Research
Quarterly, vol. 23, pp. 333–344, 1972.

[20] I. M. Oliver, D. J. Smith and J. R. C. Holland, “A study of permutation
crossover operators on the traveling salesman problem”, In proc. Second
Int. Conf. on Genetic Algorithms, pp. 224–230, 1987.

[21] S. Lin, “Computer Solutions of the Traveling Salesman Problem”, Bell
System Technical Journal, vol. 44, pp. 2245–2269, 1965.

[22] I. H. Osman, “Metastrategy simulated annealing and tabu search
algorithms for the vehicle routing problem”, Annals of Operations
Research, vol. 41, pp. 421–451, 1993.

[23] N. Christofides, A. Mingozzi and P. Toth, “The vehicle routing
problem”, In N. Christofides, A. Mingozzi, P. Toth, C. Sandi (eds.),
Combinatorial Optimization, Wiley, pp. 315–338, 1979.

[24] J. F. Cordeau, M. Gendreau, A. Hertz, G. Laporte and J. S. Sormany,
“New Heuristics for the Vehicle Routing Problem”, In A. Langevin, D.
Riopel (eds.), Logistics Systems: Design and Optimization, Springer,
pp. 279–297, 2005.

[25] P. Toth, D. Vigo, “The granular tabu search and its application to the
vehicle routing problem”, INFORMS Journal on Computing, vol. 15,
pp. 333-348, 2003.

[26] J. F. Cordeau, G. Laporte and A. Mercier, “A unified tabu search
heuristic for vehicle routing problems with time windows”, Journal of
the Operational Research Society, vol. 52, pp. 928–936, 2001.

[27] D. Mester and O. Bräysy, “Active Guided Evolution Strategies for
Large Scale Vehicle Routing Problems with Time Windows” Computers
& Operations Research, vol. 32, pp.1593–1614, 2005.


