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ABSTRACT
This paper presents AMF, an Agent Metaheuristic Frame-
work that aims at supporting the design and hybridization
of metaheuristics. The introduction of an agent-oriented ap-
proach allows to deal with flexibility, robustness and modu-
larity in metaheuristics. This framework is based on an or-
ganizational model which describes a metaheuristic in terms
of roles. These roles correspond to the main components
or tasks in a metaheuristic: intensification, diversification,
memory and adaptation or self-adaptation. Starting from
this organizational model of metaheuristic, some guidelines
allow to obtain a multiagent system that correspond to a
particular metaheuristic. In addition, we introduce an origi-
nal metaheuristic called Coalition-Based Metaheuristic (CBM)
to illustrate the use of AMF. Efficiency of CBM is illustrated
thanks to its application to the Vehicle Routing Problem.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent systems

General Terms
Design

Keywords
combinatorial optimization, metaheuristic, multiagent sys-
tem

1. INTRODUCTION
Research in metaheuristics has recently evolved to new is-
sues. It concerned not only the metaheuristics performances
facing dynamic and large problems instances, but it was also
interested in proposing simple, flexible, robust and modu-
lar metaheuristics. These features have been put forward in

several articles and surveys [22, 2]. Simplicity, flexibility, ro-
bustness and modularity are subjective but they constitute
important criteria for an effective use of metaheuristics.

Distributed Artificial Intelligence (DAI) and particularly mul-
tiagent systems seem to be a promising field of research
to tackle these new issues. Multiagent approach is tightly
linked to metaheuristics considering that both approaches
exploit the social metaphor and self-organization paradigm.
Thus, the multiagent approach is widely used in metaheuris-
tics, particularly in population-based, hybrid and distributed
metaheuristics.

Integration of DAI components in metaheuristics suffer from
a lack of tools. Thus, in this paper we propose AMF, an
Agent Metaheuristic Framework that aims at supporting the
design and hybridization of metaheuristics using an agent-
oriented approach. This framework is based on an organi-
zational model which describes the metaheuristics in terms
of roles and interactions. A particular metaheuristic can be
viewed as a refinement of this model.

This paper also introduces an original metaheuristic called
Coalition-Based Metaheuristic (CBM) that illustrates the
use of AMF. This metaheuristic is then applied to solve the
Vehicle Routing Problem (VRP). CBM combines classical
metaheuristic approach and DAI concepts. In CBM, sev-
eral agents organized in a coalition treat simultaneously an
optimization problem. These agents cooperate to perform
a better search of solutions. The cooperation consists in
exchanging information about the search space and sharing
of experiences to improve the agents behavior. The main
features of this approach are (i) the use of an agent-based
decision process, (ii) the introduction of unsupervised learn-
ing mechanisms and (iii) the exploitation of cooperation be-
tween agents.

The paper is organized as follows. Section 2 gives a brief
overview of adaptive memory programming scheme before
introducing AMF in section 3 . Section 4 and 5 present CBM
and report experiments carried out on the VRP. Finally,
section 6 provides some conclusion statements.

2. BACKGROUND
Multiagent concepts are widely used in metaheuristics, par-
ticularly in population-based, hybrid and distributed meta-
heuristics. The advantages of using multiagent and organi-



zational approaches for metaheuristics design may be jus-
tified by, the distribution and robustness inherent to mul-
tiagent systems [20], and the need of flexibility and mod-
ularity [15]. Our objective in this paper is to propose an
organizational and multiagent framework to design and hy-
bridize metaheuristics. The starting point of the study is
the Adaptive Memory Programming (AMP) [19] approach
which provides the basic concepts of metaheuristics.

AMP is a global scheme that aims at unifying several meta-
heuristics concepts. Adaptive memory programming has
been introduced by Glover in [7], to define the strategic
memory components in metaheuristics which guide the in-
tensification and diversification processes. The concept has
been extended in [19] to produce an unified view of meta-
heuristics. In this scheme, a metaheuristic can be viewed as
an iterative process summarized in algorithm 1.

Algorithm 1 AMP algorithm scheme

Initialize the memory
while stopping criterion is not reached do

Generate a new provisional solution s using data stored
in the memory.
Improve s by a local search; let s’ be the improved
solution.
Update the memory using the pieces of knowledge
brought by s’.

end while

The AMP approach put forward the iterative process com-
mon to several metaheuristics and the concept of memory
that supports the search. These elements are the basic con-
cepts of our proposed framework. Since AMP is too general
to be used as a framework to design metaheuristics [15] we
propose AMF: an Agent Metaheuristic Framework. This
framework is based on an organizational model which de-
scribes a metaheuristic in terms of roles. The AMF model
extends the AMP scheme by adding the concepts of intensi-
fication, diversification and adaptation while keeping a high
level of abstraction. In addition, we propose an iterative
specification process to define a metaheuristic using multia-
gent systems.

3. AN AGENT METAHEURISTIC FRAME-
WORK

This section introduces an Agent Metaheuristic Framework
called AMF. It aims at supporting the design and hybridiza-
tion of metaheuristics. We first describe RIO (Role Interac-
tion Organization) meta-model which ensures the descrip-
tion of the organizational model, then we detail the main
components of the organizational model of metaheuristic. In
section 3.3, we depict some metaheuristics with the different
concepts introduced. Finally, the methodological guidelines
that support the specialization process are given.

3.1 The RIO meta-model
By considering organizations as blueprints that can be used
to define a solution to a problem, we believe that an orga-
nizational approach encourages a reusable model. Thus, to
describe a metaheuristic we use an organizational approach
based on the RIO meta-model [10]. RIO introduces three
basic concepts: Role, Interaction and Organization. A role

Figure 1: RIO model example

is an abstraction of a behavior or a status in an organization.
An interaction links two roles in a way that an action in the
first role produces a reaction in the second. An organization
is defined by a set of roles and their interactions. These three
elements allow to describe a system without making any as-
sumption on the entity which plays the different roles. From
these concepts an agent is specified as an active communica-
tive entity which plays roles. An agent may be associated to
one or more roles and a role may be played by one or more
agents. An example of RIO diagram is presented in figure
1. At the organizational level an organization composed of
three roles is depicted. At the agent level the associations
of roles to agents are specified.

The proposed metaheuristic framework is based on an or-
ganizational model of metaheuristics. This model describes
a metaheuristic in terms of organization, roles and interac-
tions. In the following section we describe how RIO meta-
model is used to provide an organizational view of meta-
heuristics.

3.2 The metaheuristic organization
From a multi-agent point of view we define a metaheuris-
tic as an organization. The goal of this organization is to
efficiently explore the search space in order to find near-
optimal solutions. This exploration combines intensification
and diversification tendencies. To guide the exploration and
balance these two tendencies, structured information about
the search space is used by subordinate procedures as heuris-
tics. In addition, the strategies used to guide, intensify and
diversify may be adapted according to search experiences.
Four roles stems from this definition: intensifier, diversifier,
guide and strategist. The resulting metaheuristic’s abstract
organization is represented in figure 2. The definitions of
these four roles are given below.

3.2.1 Intensifier and diversifier roles
Intensification and diversification are the fundamental tasks
in metaheuristics. We assign a specific role to these tasks,
respectively intensifier and diversifier. These two roles corre-
spond to the search task in AMP approach. On the contrary



Figure 2: Organizational view of metaheuristics

to the AMP, intensification and diversification are consid-
ered separately.

The goal of the intensifier role is to perform a search in a
promising region of the search space. To restrict the search
area, the intensifier uses information such as a starting so-
lution or constraints on the search space. The goal of the
diversifier role is to identify new promising regions in the
search space. The diversifier possibly uses information about
already explored regions to perform its task.

These two roles can refer to a single process or two distinct
ones. For instance, in a basic tabu search, the search is
only performed by a local search. However, in the iterated
local search, intensification and diversification correspond
respectively to a local search and a perturbation [2].

3.2.2 Guide role
The goal of the guide role is to balance diversification and
intensification tendencies, and to coordinate diversifier and
intensifier roles. The guide role is an intermediate between
intensifier and diversifier roles. It structures the information
obtained by these two last roles and leads the search.

The guide role corresponds to the management of the mem-
ory in AMP scheme. The memory managed by the guide
role and the information provided to intensifier and diver-
sifier roles can take several forms. For instance, in tabu
search the memory is composed of a tabu list; in evolution-
ary algorithms, the memory is constituted by a population
of solutions; in ant colony algorithms, the pheromone trail
may be considered as a kind of memory. Thus, the concept
of “memory” is the base of the guide role.

3.2.3 Strategist role
Several hybrid metaheuristics introduce adaptation mech-
anisms. The term “adaptation” denotes a modification of
the search strategy according to the optimization context.
This context is defined by the studied problem and the cur-
rent state of the optimization process. In the organizational
model, the adaptation task is assigned to the strategist role.
Its goal is to adjust or change the strategies of guide, diver-
sifier and intensifier roles according to the context.

The adaptation in metaheuristics is a process that aims at
improving the performance of the search or reducing the pa-
rameter setting. Thus, adaptation mechanisms related to
the strategist role, adjust or change the search strategies to

suit the problem instance or the state of the optimization
process. For instance, in genetic algorithms, a population
sizing scheme is a task related to the strategist role in our
organizational model. This particular role is not investi-
gated in the AMP scheme.

3.3 An organizational view of metaheuristics
In the previous part, we presented an organizational model
of metaheuristic based on four roles. This model can be
considered as an unified view of several metaheuristics and
as an extension of the adaptive memory programming ap-
proach. The defined organizational model presents abstract
concepts that must be refined according to the problem to
be solved. Table 1 attempts to present the components of
metaheuristics associated to the roles for several representa-
tive metaheuristics: Tabu Search (TS), Simulated Annealing
(SA), Genetic Algorithms (GA), Ant Colony Optimization
(ACO), Iterated Local Search (ILS) and Variable Neighbor-
hood Search (VNS). The terms used to characterize the com-
ponents of metaheuristics draw from [2, 8].

The two first columns present the components of metaheuris-
tics related to the effective search of solutions or partial
solutions. Intensification and diversification processes can
be distinguished for several metaheuristics as GA, ILS and
VNS.

The components related to the guide role, in the third col-
umn, use intensifier and diversifier roles to manage the search.
The guide corresponds to the main strategic components
that allow to balance the intensification and diversification
tendencies. The memory managed by the guide role takes
several forms: a tabu list in TS; a single solution in SA, ILS
and VNS; a population of solutions in GA; or a pheromone
trail in ACO. The main tasks of the guide role, already iden-
tified in AMP scheme, consist of (i) updating the memory
and (ii) providing informations to ensure the construction of
new solutions, partial solutions or population of solutions.

In the last column of table 1 some components of adaptive
or self-adaptive extentions of metaheuristics are presented.
This description of adaptive components is not exhaustive.
For the tabu search metaheuristic, the Reactive Tabu Search
(RTS) approach [1] introduces a mechanism to adapt the
tabu list size. In the case of simulated annealing metaheuris-
tic, the Adaptive Simulated Annealing (ASA) approach [11]
allows to adapt the temperature schedule. Several adaptive
extensions of evolutionary algorithms exist but we have re-
tain the three major issues described in [14] that adapt the
mutation rates, recombination probabilities and the popula-
tion size. These features related to the strategist role modify
the search strategy by adjusting the setting of control pa-
rameters. This table shows that our framework can model
a wide range of metaheuristics.

3.4 Methodological guidelines
To obtain a metaheuristic from the AMF organizational
model, it is necessary to refine the different roles and deter-
mine the multiagent structure of the optimization system.
Thus we provide some methodological guidelines to assist
the design of a particular metaheuristic starting from AMF
organizational model. The result of this design process is a
multiagent system that correspond to a metaheuristic. This



Table 1: Realization of AMF roles for representative metaheuristics
Metaheuristic Intensifier Diversifier Guide Strategist

TS Neighborhood search Tabu list update; Current solu-
tion choice

Adaptation of tabu list size
(RTS)

SA Neighborhood move Current solution choice with ac-
ceptance criterion; Temperature
update

Adaptation of temperature
schedule (ASA)

GA Recombination Mutation Selection Adaptation of: population size,
mutation rates, recombination
probabilities

ACO Solution construction Pheromone update
ILS Local Search Perturbation Current solution choice with ac-

ceptance criterion
VNS Local Search Shaking Current solution choice; Neigh-

borhood choice

process draws from RIO methodology [9], and is composed
of three phases:

1. AMF Roles refinement

2. Agentification

3. Metaheuristic specialization

The first phases consists in determining the means that are
required to perform the different roles described in the AMF
organizational model. Thus, it is necessary to analyze the
optimization problem characteristics (difficulty, known opti-
mization methods, etc.) as well as the functional and non-
functional requirements (robustness, distribution, etc.). The
result of this phase consists in a particular organizational
model of a metaheuristic with a description of each role be-
havior and interaction.

The agentification allows to determine the multi-agent struc-
ture of the metaheuristic. It consists of (i) the identification
of the different types of agents, (ii) the assignment of roles to
these agents and (iii) the description of roles scheduling for
each type of agent. This phase allows to determine a multia-
gent system able to solve one or several class of optimization
problems.

The final phase consists in specializing the multiagent sys-
tem to treat a particular optimization problem. For in-
stance, if a genetic algorithm has been described in the pre-
vious phase, the specialization consists in the determination
of mutation and recombination operators considering a par-
ticular optimization problem.

4. A COALITION-BASED
METAHEURISTIC

This section illustrates the AMF methodological guidelines
with the design of an original metaheuristic called Coalition-
Based Metaheuristics (CBM). In the section 4.1, the main
features of CBM are detailed. Then, we follow the guide-
lines of our framework to describe CBM. Finally, the last
two sections put the emphasis on the decision process and
learning process related to a CBM agent.

4.1 CBM principle
CBM is a metaheuristic based on the metaphor of a coali-
tion. The term “coalition”, drawn from [16], designates a
multiagent system where agents have the same capacities
and cooperate by means of direct interactions. In our case,
the coalition is composed of several agents which have the
capacity to individually treat the optimization problem but
cooperate to coordinate and improve the search.

To perform the search a CBM agent manages a single solu-
tion and uses several operators to move in the search space.
These operators are related to the intensification task or
diversification task. Intensification operators refer to im-
provement processes such as local search procedures, and
diversification operators correspond to generation, mutation
or crossover procedures. The search procedure involved by
an agent have some similarities with Variable Neighborhood
Search (VNS), (see for instance [8]). A set of local search op-
erators are applied on the current solution until a local min-
imum is reached, then a perturbation is performed using a
diversification operator. The schedule of the operators is de-
termined by a decision process. This strategic process selects
the most appropriate operator considering the optimization
context. In our case, the optimization context refers to the
problem instance and the evolution of the optimization pro-
cess. The search behavior of an agent is adapted during the
optimization by learning mechanisms. These learning mech-
anisms modify the rules of the decision process according to
the search experiences.

In addition, agents can cooperate by two ways. In one hand,
an agent shares its best known solution. This solution can
be exploited by other agents with crossover operators. This
cooperation is intended to guide the search through new
promising region of the search space. In another hand, an
agent can share its internal decision rules in order to allow
mimetism of behavior. This second cooperation mechanism
is intended to favor the search behaviors that often found
new best solutions.

The main advantages of the CBM are the flexibility and the
robustness. The flexibility is the capacity to solve various
type of problem, and the robustness is the ability to maintain
performance in a perturbed environment. To tackle these



two points we propose a distributed metaheuristic where
several subordinate heuristics are used. The distribution
of roles over several agents guarantee the robustness. Thus,
addition or removal of an agent does not perturb the global
functioning of the system. Combination of different subor-
dinate heuristics and the use of simple adaptive mechanisms
ensure effectiveness of the optimization. CBM is particularly
designed for (i) combinatorial optimization problems where
several neighborhood structures can be exploited and (ii)
problems that require a high computational capacity which
justify a distribution.

4.2 CBM Roles refinement
To describe the main components of CBM, we first refine the
AMF organizational model and detail the behavior of each
roles. Figure 3 presents the CBM organization resulting
from refinement of AMF organizational model.

Figure 3: AMF organizational model refinement for
CBM

Intensifier and diversifier roles: In the coalition-based
metaheuristic, the intensifier and diversifier roles are related
to several operators. Intensification operators refer to local
search processes and diversification operators correspond to
generation, mutation or crossover operators. Thus, CBM
intensifier and CBM diversifier role behaviors are simple
tasks which provide solutions to the CBM guide role.

Guide role: The CBM guide role manages a set of three so-
lutions, the current solution scurrent, the best found solution
sbestfound and the best known solution sbestknown obtained
by interaction with others guide roles. The CBM guide role
coordinates the intensifier and diversifier roles thanks to a
decision process that enable the choice of the operator to
apply according to the optimization context. This decision
process is detailed in the following section. In addition, the
CBM guide role shares its best found solution. This solu-
tion can be exploited by crossover operators managed by the
diversifier role.

Strategist role: The CBM strategist role aims at adapt-
ing the decision process rules used by the CBM guide role.
This adaptation is performed by reinforcement learning and
mimetism learning. The reinforcement learning consists in
observing the search experiences and favoring the rules that
lead to good solutions. This learning is performed by an
interaction with a single CBM guide role. The mimetism

learning consists in copying a part of the decision rules com-
ing from others CBM strategist role and identified as effi-
cient. These two learning mechanisms are presented in the
next sections.

4.3 Agentification
The refined model of CBM allows to describe the agents and
the structure of the organization. In the coalition, an agent
plays all the roles: CBM Intensifier, CBM Diversifier, CBM
Guide and CBM Strategist. The CBM system is composed
of a fixed number of identical agents. These agents are or-
ganized in a coalition where each agent can interact with
all other agents. The cooperation between agents occurs for
the guide role and the strategist role. The agentification is
illustrated in figure 4.

Figure 4: Agentification of CBM organizational
model

The behavior of an agent corresponds to a particular sched-
ule of roles. The algorithm 2 presents the behavior of an
agent of the coalition. In this algorithm CBM Intensifier
and CBM Diversifier roles correspond to the application of
an operator. The CBM Guide role is in charge of the choice
of the operator and the update of memory. Finally, the
CBM Strategist role consists of the reinforcement learning
and mimetism. This algorithm is close to the AMP scheme
described in algorithm 1 with an additional learning step.

Algorithm 2 Role scheduling for a CBM agent

Guide role: Initialize the set of solutions and decision
process
while stopping criterion is not reached do

Guide role: Choose operator
Intensifier or Diversifier role: Apply operator
Guide role: Update set of solutions
Strategist role: Learn (reinforcement, mimetism)

end while

To complete this description of CBM we detail in the next
sections the decision process and learning mechanisms.



4.4 Decision process
The decision process is the main component of the CBM
Guide role. It allows to select an operator according to the
optimization context. To perform the selection of operators
we use the mechanism described in [17], which has some
similarity with the Holland Classifier Systems, and which is
based on a set of rules in form of 〈condition, action〉. Lets
C be the set of conditions, O the set of operators. For a
condition ci, a weight wi,j is associated to each operator oj .
The weight wi,j corresponds to the potential of execution of
the operator oj in the condition ci. The effective choice of an
operator is performed by a roulette wheel selection principle.
Thus, the probability P (oj |ci) to apply the operator oj in
the condition ci is computed using the following formula.

P (oj |ci) =
wi,jPm

k=1 wi,k
(1)

With:
C : (ci)i=1,...,n ; Set of states
O : (oj)j=1,...,m ; Set of operators
W : (wi,j)i=1,...,n;j=1,...,m ; Weight matrix

To select an operator, the optimization context is analyzed
to produce an input condition for the decision process. Then
an operator is obtained thanks to the roulette wheel selection
principle. This simple decision process allows to restrain the
choice of operators in a given context by setting the corre-
sponding weight value to zero. In addition, the augmenta-
tion or diminution of a weight value produce respectively
an advantage or a restriction of an operator in a given con-
text. Thus the task of learning mechanisms is to modify the
weight values according to the past experiences of the agent.

The determination of the set of conditions is an important
step of the design of the decision process. A condition must
well characterize the optimization context to take an appro-
priate decision. Here, the conditions are exclusives and lim-
ited to the local minimum properties of the current solution
of the agent. Thus, the first condition characterizes a non lo-
cal minimum solution, and the other conditions correspond
to the different combinations of local minimum properties.
For instance, if two neighborhood structures N1 and N2 are
used for the local search, the resulting conditions are:
1. scurrent is not a local optimum.
2. scurrent is a local optimum only on N1.
3. scurrent is a local optimum only on N2.
4. scurrent is a local optimum on N1 and N2.

This definition of the set of conditions allows to deal with
the frequency and order of application of the operators. Ini-
tialization of the weight matrix is made with the parameter
α that corresponds to the initial weight value. Thus, after
the initialization of the decision process, all possible opera-
tors have the same probability to be chosen. Then, during
the optimization, the learning mechanisms will adjust the
weights according to the experiences of the agent to improve
its decision ability.

4.5 Learning mechanisms
The agents use two learning mechanisms to adjust their
behaviors, reinforcement learning and mimetism learning,
which are related to the CBM Strategist role. The learning

is performed during the optimization search in order to im-
prove the search strategy of agents. This section describes
each of these learning mechanisms.

4.5.1 Reinforcement learning
In [12] the authors define reinforcement learning as the prob-
lem faced by an agent that must learn behavior through
trial-and-error interactions with a dynamic environment. The
two major features of reinforcement learning reported in [18]
are trial-and-error search and delayed reward. In our case,
several sequences of operators are tried during the optimiza-
tion thanks to the roulette wheel selection principle. A rein-
forcement learning is performed if, and only if, the agent find
a solution better than its previous best found solution. In
this case, the action plan (sequence of operators) which con-
ducted the agent to find this solution is reinforced. Within
the decision model previously presented, an experience is a
triplet 〈conditionsi; operatoroj ; gaing〉 where the gain is the
cost difference of scurrent obtained by operator application.
The reinforcement corresponds to an augmentation of the
weight value wi,j related to the experience. This mecha-
nism is intended to favor the behaviors that often find new
best solutions.

To perform the reinforcement learning, it is necessary to
identify the beneficial experiences and determine a reward.
This problem is known as the Credit Assignment Problem.
It is difficult to evaluate the efficiency of a given operator
immediately after its application since it may depend on the
order of application of other operators. Thus, beneficial ex-
periences are identified from the observation of an action
sequence performed by the agent. A reinforcement is real-
ized when the current solution fitness is better than the one
of the best previously obtained solution of the agent. The
experiences from the last diversification operator application
to the current state are reinforced.

In order to refine the reinforcement learning, two cases are
distinguished, (i) when the agent improves its best found
solution, and (ii) when the agent improves the best known
solution value it previously obtained during his past inter-
actions with other agents. The reinforcement factors σ1 and
σ2 are respectively used for the two types of reinforcement.
The reinforcement is performed using the formula (2).

wi,j = wi,j + σ (2)

With:
(ci; oj) ; Experience to reinforce
wi,j ; Weight related to the experience
σ : {σ1; σ2} ; Reinforcement factor

4.5.2 Mimetism learning
In the coalition-based metaheuristic, agents perform rein-
forcement learning individually. The mimetism learning [23]
allows a cooperation between agents in order to share the
behaviors already enhanced by the reinforcement learning.
The mimetism learning works on the assumption that an
agent imitates the behaviors of the most efficient agents. At
each cycle, the agent examines the fitness value of the best
solution found by each other agent of the coalition. When an
agent A observes that the agent B has found the best solu-
tion value, the agent A imitates the behavior of the agent B.



Lets Wa be the weight matrix of agent A and Wb the weight
matrix of agent B, the imitation corresponds to the adoption
by agent A of a weight matrix equal to the weighted mean
of Wa and Wb. The imitation is computed as follow:

Wa = (1 − ρ).Wa + ρ.Wb (3)

With:
Wa ; Weight matrix of the imitator agent
Wb ; Weight matrix of the imitated agent
ρ ; Mimetism rate

The combination of reinforcement learning and mimetism
learning allows to introduce adaptiveness into the popula-
tion based search, and then to enhance individual and global
behavior. An agent exploits its past experiences in order to
improve its capacity to find new best solutions, but it also
shares its experiences in order to collectively ensure a better
choice of actions in the future. The reinforcement learning
allows to improve the local behavior. However, imitation
learning lets exploit the search strategies developed by the
other agents.

5. CBM FOR SOLVING THE VEHICLE
ROUTING PROBLEM

The purpose of this part is to specialize CBM previously
presented to solve the Vehicle Routing Problem (VRP). In
this section, we present the specialization of CBM to treat
the VRP then, some computational results are reported.

5.1 Specializing CBM
The VRP is a well-known problem in the field of transporta-
tion and logistics. This problem has been widely studied
since 45 years. It consists in finding a set of optimal routes
that serve a given set of customers. We use the formulation
depicted in [4].

The VRP is defined on a graph G(V, E) where V = {v0, ..., vn}
is a set of vertices and E = {(vi, vj)/vi, vj ∈ V ; i 6= j} repre-
sents a set of edges. The vertex v0 corresponds to the depot
while remaining vertices are customers. A quantity qi of
some goods to be delivered by a vehicle and a service time
δi required by a vehicle to unload the quantity qi at vi is
associated to each vertex vi, i ∈ {1, ..., n}. A cost or length
ci,j is associated to each edge (vi, vj). A feasible solution
corresponds to a set R of m vehicle routes such that, (i)
each route starts and ends at the depot, (ii) each customer
is visited exactly once, (iii) the total demand of any route
does not exceed the vehicle capacity Q and (iv) the duration
of any route does not exceed a bound D. The objective is
to minimize the total travel time.

The VRP is NP-hard and can rarely be solved exactly for a
number of customers exceeding 100. Several heuristics and
metaheuristics have been proposed for the VRP. Surveys
on these methods can be found in [6]. CBM seems to be
well adapted to solve the VRP since the VRP is a NP-hard
combinatorial optimization problem on which a wide range
of neighborhood structures can be exploited.

The specialization of CBM for a particular optimization
problem requires to define the diversification and intensifica-

tion operators. The operators used in our approach partially
draw from Evolutionary Algorithms. Generation, crossover
and mutation operators perform the diversification task. Sev-
eral standard local search heuristics are used as intensifica-
tion operators.

Initial solutions are obtained by generation operators. These
operators are also used as diversification operators during
optimization. Two different operators are used: greedy in-
sertion algorithm and sweep algorithm. Two crossover oper-
ators are used: route insertion crossover and order crossover.
A simple Remove-and-Reinsert (RAR) procedure is used as
a mutation operator. Four different local search operators
are used for the purpose of intensification: 2-opt, 3-opt, 1-
move and 1-swap heuristics. The 2-opt and 3-opt heuristics
are special case of λ-opt heuristics. The 1-move and 1-swap
heuristics are based on λ-interchange mechanisms.

5.2 Computational results
The application of the coalition based metaheuristic to the
vehicle routing problem has been tested on the fourteen in-
stances described in Christofides et al. [3]. The CBM has
been implemented in Java and tested on a Pentium 4 at
3GHz with 1Gb of memory. The parameter setting of the
CBM is given in table 2. The values used for computational
experiments are also reported.

The following experiments are performed to assess the im-
provement of performances resulting from the learning mech-
anisms proposed, according to different sizes of the coalition,
and to evaluate the performances of the approach against
some of the powerful heuristics of Operations Research.

Table 2: CBM Parameters
Parameter Description Value

α Initial operator weight value 5
σ1; σ2 Rewards for reinforcement learning 1;2

ρ Mimetism rate 0.4
A Number of agents in the coalition 15

5.2.1 Performance of reinforcement learning
and mimetism

Starting with a referential version of the algorithm with no
learning mechanism, we successively introduce the reinforce-
ment learning and the mimetism learning and evaluate the
deviation of the average route length to the best known so-
lution values reported in [4].

The CBM has been experimented for different coalition sizes
between 1 to 20 agents on the 14 Christofides instances. To
make the evaluation fair, the total number of iterations per-
formed by the agents was fixed, and remained constant for
all the tests to the value of 10, 000 agent iterations. Thus, in
a coalition with A agents, a single agent performs 10, 000/A
iterations. The computation time allowed for each config-
uration of the algorithm was approximately of 30 seconds,
the introduction of the learning mechanisms and the aug-
mentation of the population size having a negligible impact
on this value.



Figure 5: Impact of the learning and the coalition
size on the quality of the solution

For each coalition size, CBM is executed 10 times for each of
the 14 instances. The average percentage deviations to the
best known values are reported in Figure 5. Three different
configurations are considered. The first one corresponds to
a coalition of agents without Reinforcement Learning (RL)
and no mimetism. In this case, the only cooperation mech-
anism is provided by the standard crossover operators. In
the second configuration case, the agents have the capac-
ity to individually learn by reinforcement learning. In the
third configuration, both individual and collective learning
by mimetism are considered.

It can be observed on the figure that the additional learn-
ing capacities improve the quality of the solutions found.
In addition, the improvement already carried out by using
learning looks to be more pronounced as the population size
increases, particularly by using the mimetism learning. Be-
yond 15 agents, the computational results are slightly dete-
riorated. This can be explained by the small number of it-
erations performed by a single agent. The experimentations
illustrates the contribution of the cooperation in CBM.

5.2.2 Evaluation against other metaheuristics
Here, we evaluate the CBM approach against two power-
ful metaheuristics presented in the survey of Cordeau et al.
[4]. They are: Granular Tabu Search (GTS) [21] and Uni-
fied Tabu Search Algorithm (UTSA) [5]. These approaches
are selected because they are considered as being ones of
the most simple and flexible approaches in the literature.
We think that they are the better choice for comparison
since CBM also addresses simplicity and flexibility by of-
fering three independent levels of modeling, that are the
learning level, the population based metaheuristic level with
cooperation, and the problem-dependant heuristic level.

The computational results are presented in Table 3. For
each problem, 10 runs are performed and the average and
best solution found are considered. The first four columns
respectively give the problem name, the type of constraints,
the number of customers and the best known solution value
taken from [4]. The columns 5-8 respectively report the av-
erage deviation of the route length, given in pourcentage, to
the best known value, the best found value over the 10 runs,
the standard deviation, and the computation time per run in
minutes. The other columns report the average route length

deviation and the computation time in minutes respectively
for the two other approaches. The GTS was evaluated on
a Pentium (200 MHz), and the UTSA on a Pentium 4 (2
GHz).

The results indicate that our CBM approach is not yet com-
petitive to the powerful operations research heuristics. Nev-
ertheless, and taking care of the different materials used,
with an average deviation of 2.47% and an average com-
putation time of 0.5 minute per run, CBM is not clearly
dominated, on both quality and computation time, by the
UTSA, which yields 0.56% of deviation in roughly 25 min-
utes. On the contrary, to be competitive with the GTS,
solution quality produced by the CBM, as well as compu-
tation time, would have to be improved both by a factor
at least 5. However, it is worth to note that, in a first at-
tempt, we use a naive implementation of the operators. We
did not use implementation tricks such as candidate lists,
“don’t look bits”, or k-d trees which generally have a great
impact on computation times, and then on the overall per-
formances. This point is illustrated here by considering the
UTSA which is very slow and the GTS which is very fast.
This is because the latter uses such implementation tricks.
It is often the case that the most powerful approaches are
also the most complicated ones. Such an example is the
Active Guided Evolution Strategy (AGES) [13] which is, at
the date of writing, the overall winner considering both solu-
tion quality and computation time, but which is considered
complicated to implement and understand [4].

6. CONCLUSION
In this paper we have proposed AMF, an Agent Metaheuris-
tic Framework that aims at supporting the design and hy-
bridization of metaheuristics. The introduction of an agent-
oriented approach allows to deal with flexibility, robustness
and modularity in metaheuristics. This framework is based
on an organizational model which describes a metaheuris-
tic in terms of roles. Starting from this model, the design
process of a metaheuristic consists in refining the AMF or-
ganizational model, agentifying the refined model and spe-
cializing the multiagent system. The result of this process is
a multiagent system that correspond to a particular meta-
heuristic. In order to illustrate the AMF we have presented
an original metaheuristic called CBM using the AMF guide-
lines. This metaheuristic combines classical metaheuristic
approach and DAI concepts. In this paper the efficiency of
CBM was illustrated thanks to its application to the Vehicle
Routing Problem.

This work is a part of larger effort to provide a whole set of
methodological guidelines for the design of metaheuristics to
deal with hard combinatorial optimization problems. Fur-
ther works will deepen the meta-model concepts and asso-
ciate a methodology to guide the developer during his work
of modeling and implementing a multiagent based meta-
heuristic.
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