
Simulation and Evaluation of Urban Bus

Networks Using a Multiagent Approach

David Meignan ∗, Olivier Simonin and Abderrafiâa Koukam
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Abstract

Evolution of public road transportation systems requires analysis and planning tools
to improve service quality. A wide range of road transportation simulation tools exist
with a variety of applications in planning, training and demonstration. However, few
simulation models take into account traveler behaviors and vehicle operation specific
to public transportation. We present in this paper a bus network simulation tools
which include these specificities and allows to analyze and evaluate a bus network
at diverse space and time scales. We adopt a multiagent approach to describe the
global system operation as behaviors of numerous autonomous entities such as buses
and travelers.
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Multiagent system, Decision support system

1 Introduction

Users attitude towards transportation is in perpetual evolution for conve-
nience, security and economical or environmental reasons. Public transporta-
tion systems, such as bus-networks, are a key design for people mobility. These
systems, which are considered in this article, have to adapt to the demand in
order to improve the service quality and the benefits. To develop new public
transportation solutions it is very difficult or even impossible to use direct ex-
perimentation considering legal, financial, material or time constraints. More-
over, we cannot establish a global theoretical model for such systems due to
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their size and complexity. Thus, we adopt computer simulation as a solution
for analysis and planning of public transportation systems.

A wide range of transportation simulation tools exist with a variety of applica-
tions from scientific research to planning, training and demonstration (1). In
this domain, few works detail public transportation systems and they generaly
deal with the demand estimation problem. In this paper we focus on public
transportation networks and we put the emphasis on the system modeling
and animation. We give a global and practical view on public transportation
simulation, from the modeling to the analysis of simulation results.

In a bus-network system we can identify three main components: people be-
haviors, road traffic dynamics and specific bus-network operations. This last
encapsulates the interactions between the buses, passengers and road traffic.
Complexity of a bus-network system results from these interactions. In this
paper we show that the multiagent approach is an interesting way to repre-
sent such systems and the interactions within them. This approach, derives
basically from two observations. First, an urban public transport network is
a naturally complex system which involves a set of distributed and interact-
ing entities (2; 3; 4). Second, the global system behavior is made of several
emergent phenomena that result from the behavior of individual entities and
their interactions (5; 6; 7). For example, the real schedule of a bus is sub-
ject to users activity, road traffic and other buses. Multiagent approach allows
to describe complex systems where numerous autonomous entities interact to
produce global solutions or processes.

In this paper, we propose an original bus-network simulation handling three
major constraints. First, the simulation must include the public transportation
specificities. Second, it must allow to visualize the evolution of the different
system components in simulated time (faster or slower than the real time).
Finally, results of simulation must be analyzed at different time and space
scales. As emphasized by Silva (8), few works propose to tackle these three
objectives in a same simulation tool. These different constraints, which are
considered in our approach, were determined from a project related to the
design and evaluation of the bus network of Belfort city, situated in Eastern
France.

This paper is organized as follows. After a presentation of our simulation ob-
jectives in Section 2, the architecture of the simulation model is presented in
Section 3. Some details of implementation are drawn in section 4. Section 5
presents the application of simulation to real cases and analyze some exper-
imental results. Then, a conclusion and some study’s perspectives are drawn
in Section 6.
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2 Bus network : structure and simulation

In this section, we define first the main components of bus-networks, then, we
explain the interest of bus-network simulation.

2.1 Bus network structure

Basically, the static structure of a bus network is composed of four elements:
itinerary, line, bus stop and bus station (Figure 1(a)). An itinerary is one of
the main elements of a bus network. It can be represented by an oriented
path on the road network which serves several bus stops. The route between
two stops is called an inter-stop. Itineraries are grouped into lines when their
functionalities are similar or complementary. For instance, in Figure 1(a), the
line A is composed of two itineraries which form a round trip. It is important to
differentiate bus stop and bus station. A bus stop belongs to a single itinerary
whereas a bus station gathers a set of close bus stops. The role of a bus
station is to allow passenger connections. A temporal aspect is added to this
static structure via timetables which describes the whole expected arrival or
departure bus times on bus stops. It can be represented by several diagrams
similar to the one in Figure 1(b). A timetable contains all buses missions for
a day. A mission is composed of several journeys performed by a unique bus.
Each journey corresponds to an itinerary covered by a bus at a given time.
A mission often consists in alternatively covering the itineraries composing a
round trip.

The presented structures describe the theoretical evolution of buses into the
bus network. However, to plainly describe a bus network and give a relevant
evaluation, it is necessary to take into account the travelers and the road traf-
fic. Indeed, the global system evolution comes from behaviors and interactions
between buses, travelers and road traffic. Thus, we adopt computer simulation
as a solution for analysis and planning of bus networks.

2.2 Simulation statement

Simulation of a bus network has three main interests: observation, constraint
verification and network evaluation (see Output level in Figure 2). The first
one concerns the global observation of the network, from a visual point of
view. It allows the designers, operators and public authorities to have a global
vision of the network and its dynamics. In other words, the simulation allows
to observe the network functioning and to discuss its global design. The second
interest relies on the possibility to check local and global design constraints
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Fig. 1. Structure of a bus network: (a) Static structure (b) Timetables view.

such as passenger connections or timetable synchronization. Moreover, it al-
lows to evaluate/control dynamic processes that are difficult to analyze from a
static point of view. Finally, the third main advantage of the simulation is the
evaluation of the network efficiency, considering different static and dynamic
criteria through different scenarios. This evaluation is divided according to
three points of view: Travelers, Operator and Authorities (9). For the trav-
elers, the efficiency of a public transportation network is measured by the
accessibility of the network, the trip duration and its cost. The interest of the
operator, which is the company operating the network, is the global profits
and the operational costs. Finally, the interest of the authorities is to balance
the profits of the operator and the transportation service. Thus, our simulation
tool must provide different measures allowing the evaluation of the network
following these three points of view.

As the input of the simulation we dispose of some available data. They are the
characteristics of the population and the description of transport structures
presented in the previous section. From these initial data, the simulation must
depict the evolution of the bus network. The global running of a bus network
results from the behaviors of entities and their interactions. Three main entities
are identified as essential elements involved in a bus network: Buses, Travelers
and the Road traffic. Figure 2 represents the main components of the proposed
simulation. The model is based on these three elements. To represent such
distributed and interacting entities we adopt an agent oriented approach for
the simulation of bus network.

4



Travelers behaviors

Traffic

Buses behaviors

Bus network simulationGlobal transportation
demand

Road-network
structure

Bus-network 
structure

& theoretical
time-table

Observation
(e.g.: Bus queue)

Constraints
verification

(e.g: Connections)

Evaluation
- Travelers
- Operator
- Authorities
(e.g.: Waiting time,
passenger load)

Input

Output

Fig. 2. Simulation components.

3 Agent-oriented modeling and simulation

We have shown in the previous section that bus networks are complex systems.
This complexity is particularly due to the dynamic of the system resulting from
the interaction between the different components. The multiagent approach is
a well suited approach to design such complex systems. Indeed, this approach
relies on the assumption that a system is composed of autonomous entities,
called agents, that interact in order to deal with a global goal or some local
tasks.

In the following part, some definitions about Multi-Agent Systems (MAS) are
presented and the interest of using such approach for transport simulation is
discussed.

3.1 Multiagent approach

If MAS is a growing research domain, there is no universally accepted defini-
tion of the term agent. Each MAS application domain gives its proper defini-
tion which exhibits a specific process or architecture. Nevertheless, some agent
properties are generally accepted. Wooldridge (10) widely describes agents as
computer system that is situated in some environment, and that is capable of
autonomous action in this environment in order to meet its design objectives.

This definition allows to draw a set of key properties:

• An agent is an autonomous entity, i.e. it acts only on its self decisions.
• An agent is situated in an environment. It perceives the environment and

performs action according to its goal and perception.
• An agent plays one or several roles inside the system, in order to reach its

objectives.
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From these properties a MAS is defined as a set of interacting agents. However,
two types of MAS can be defined following the agent architecture which is used:
deliberative (or cognitive) and reactive architecture. Deliberative agents have
generally a symbolic representation of their environment and cooperate thanks
to high level communication protocols (11). At the opposite, reactive agents do
not have representation of their environment. They act following their percep-
tions, which are very limited. Reactive agents can cooperate and communicate
through their interactions with the environment (called indirect communica-
tion). As a consequence, such reactive systems present some global intelligent
behaviors that result from the numerous interactions between agents and their
environment (e.g. self-organization and emergent phenomenon) (6). The model
we propose for the simulation of a bus network relies essentially on the reactive
approach. Buses and travelers are considered as simple entities evolving in a
wide and complex system. However such entities have naturally cognitive skills
that will be integrate as simple behaviors in a reactive-based architecture (see
section 3.2).

Applying the multiagent approach to transport simulation presents several
interests. First, there exists some techniques and platforms, as Madkit or
Swarm (12; 13), to deal with the simulation of numerous entities. Second,
agent modeling is a flexible approach to define autonomous behaviors. There
is no constraint on the modelling level, i.e. an agent can describe one simple
entity as a set of linked entities. For instance, in our model, the Bus agent
represents the vehicle, its driver and a set of passengers. Finally, reactive MAS
are good tools to observe and to study emergent phenomenon as they focus
on the modelling of interactions between the entities (14). The emergence of
traffic jams in urban networks can be easily modeled by this way (15). In
our transportation model, where the dynamic is defined at the micro level by
agents and their interactions, some complex phenomena can be obtained at a
global level.

MAS have already been successfully used for simulating transportation sys-
tems. A first MAS purpose in transport simulation consist in simulate vehicles
to study traffic dynamics (16; 17). An other direction of MAS in transporta-
tion simulation concern the study of learning and emmergence of coordination
in the case of route-choice and modal-choice (18). In the proposed agent model
we are interested in the first of these two perspectives.

3.2 Multiagent modeling of a bus network

Multiagent modeling requires to identify the relevant entities of the system and
their interactions. In the considered urban environment, the basic components
of our system are persons and vehicles. However, the potential number of these
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entities is too important to “agentify” all of them. Thus, we choose to only
model buses and travelers as situated agents, and model other entities in a
macroscopic way as shown in Figure 3. This choice allows to focus on buses
and travelers activities in order to analyze travel time and network operations.

The environment, where Bus agents and Traveler agents move, is the com-
position of Road network, Bus network and Pedestrian network. These three
elements are strongly linked by several interfaces. For instance, bus-stops are
shared by both Bus network and Pedestrian network. The environment has
a prominent role in situated MAS (19; 20). In our case, the environment is
not only a shared common space where agents are located, it exhibits dynam-
ical properties as traffic constraints. The main role of the environment is to
constraint perceptions and interactions of agents. Indeed, a Bus agent and a
Traveler agent can interact only when they are located at the same bus stop.
This constraint is provided by the environment. The two types of agents that
move in this environment are now presented.

The Bus agent plays two roles at the same time: Vehicle and Transport service.
The Vehicle role describes the moving of the bus within the road network. This
role is constrained by the road traffic and other Bus agents. The second role,
the Transport service one, represents the ability of a bus to transport persons,
considering its capacity and the demands. The behavior of a Bus agent is
depicted in Figure 4.(a) by a finite state automata. In practice, an instance of
Bus agent corresponds to a mission as defined in section 2.1. The planning of
the mission is pre-defined by the timetables, however, the progression of a Bus
in the network is constrained by the road traffic and travelers as presented in
section 3.3.

The Traveler agent plays alternatively the roles Pedestrian and Bus passenger.
The Pedestrian role of a Traveler agent is played when (i) he goes to the first
bus-stop, (ii) joins a new bus-stop for a connection and (iii) goes to the travel
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Fig. 4. Agents behaviors presented as finite state automata: (a) Bus agent (b) Trav-
eler agent.

destination from the last bus-stop. The Bus passenger role of a Traveler takes
place when the agent waits at a station with the intention to take a bus. This
role persists until the traveler reaches the desired station. The behavior of a
Traveler agent is given by Figure 4.(b). Each travel by bus corresponds to an
instance of a Traveler agent. The route of a Traveler agent is pre-determined
by an utility model, detailed in section 3.4, but it is important to note that
the transport duration results from the buses’ behaviors.

3.3 Traffic simulation

We have seen in the previous section that a Bus agent interacts with car traf-
fic when it covers an inter-stop. It is, then, necessary to represent this traffic
because it has a significant impact on the simulated system. Road traffic sim-
ulation has attracted much research (1). Simulation models can be classified
in three categories (21; 22): microscopic, macroscopic and mesoscopic models.

• Microscopic model considers each moving vehicle within the road network.
A vehicle has its own characteristics as its instantaneous speed, its size, its
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driving style, etc. The movement of a vehicle results from these “vehicle
scale” properties. In (21), the authors discern submicroscopic models and
microscopic models. Submicroscopic simulation models bring an additional
level of details by describing the functioning of vehicles’ subunits and the
interaction with their surroundings.

• Macroscopic models represent traffic by introducing aggregated variables
like vehicles density or their mean speed. These variables characterize the
traffic at the scale of road segment or network.

• Mesoscopic models derive from both microscopic and macroscopic models.
The vehicles are discerned but their movements result from macroscopic
variables.

Microscopic simulation models require more detailled input, and greater com-
putational resources than macroscopic and mesoscopic ones (23). As we need
to take into account the road traffic of a whole city and visualize the evolution
of the bus network, we chose to develop an hybrid traffic simulation model.
Vehicles, except the buses, are simulated with a macroscopic model whereas
buses are simulated with a microscopic approach.

The data of our traffic simulation is obtained in two steps. From the global
demand, we first determine the modal choice. Then, we compute the traffic
flow from personal vehicles demand. Finally, the movement of Bus agents is
determined by a volume-delay relation. The volume-delay function used is the
one defined by the Bureau of Public Roads (24). The influence of traffic flow
on agents are unilateral. We neglect the direct effect of buses on traffic since
they have only a local action on road traffic and it is not our objective to
analyze impact of buses operations on road traffic.

Lots of accurate models exist for the modal-choice (25) and the traffic assign-
ment (26; 27; 28). However, we opt for a Multinomial-Logit model (MNL)
combined to an all-or-nothing procedure. These two components have been
choosen for their intelligibility, facility of parameter setting and computation
speed.

In addition to this traffic model, the time spent by a Bus agent at bus-stops is
computed with a model derived from observations of Rajbhandari et al. and
Dueker et al. (29; 30). The model assumes that the main determinants of the
dwell time are the number of person boarding and number of person alighting
at the bus stop.

3.4 Modeling of traveler behaviors

To identify the bus passengers and establish their transport behavior we
mainly use a modal-choice model. The objective of a modal-choice model is to
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assign demand to the different transportation supply. Typically, the input of
the model is the global demand and the output correspond to the distribution
of this demand over the transportation modes. Figure 5(a) is an example of
the supply side of the model.

A transportation demand related to a person is defined as an origin, a desti-
nation and a departure or arrival date. The demands properties are generated
from statistic data. Within a day, a person can make several transportation
demands. For each demand, the user is faced to several alternatives of route,
transportation mode or other choices. He makes his transportation choices
considering his characteristics and the attributes of each potential alterna-
tive. To determine the demands related to the bus network, we focus on the
mode choice. We describe this choice with a Multinomial-Logit Model (MNL)
(31; 32; 33). This model assumes that each alternative is expressed by a value
called utility, and includes a probabilistic dimension to the decision process.

The multinomial choice model defines the probability for a given individual n
to choose transportation mode i within the choice set Cn by :

P (i|Cn) =
eVi,n∑

j∈Cn

eVj,n
(1)

Where Cn are the transportation mode alternatives which include personal
vehicle like car, walk or other non-motorized mode, and bus. Vi,n is the utility
function of the transportation mode i. We consider an expression of utility
derived from (31) and (34).
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Vi,n = µcost (ci,n) + µtime (di,n) (2)

where :

di,n = βwaittwaiti,n + βwalktwalki,n
+ βvehicletvehiclei,n

The utility function Vi,n expresses that the perceived cost of a travel is com-
posed of the financial or “out-of-pocket” cost of trip ci,n and the perceived
duration of trip di,n (35). The parameters µcost and µtime allow to balance
these two costs. Thus, the ratio µtime/µcost represents the cost of time. The
perceived duration of a trip considers the effective duration of waiting, walking
and in-vehicle situation of the traveler (twait, twalk and tvehicle). These values
are weighted to add a comfort dimension and denote that the three situations,
namely walking, waiting and in-vehicle are increasingly comfortable.

3.5 Computation of deterministic utility for mode choice

To estimate the probability of transportation modes for a demand n it is nec-
essary to evaluate the utility of each mode. We consider three transportation
modes : walk, car and bus.

For a walk trip, the financial cost cwalk,n is null and the perceived duration is
only composed of the perceived walk duration (βwalktwalkwalk,n

). To estimate the
effective trip duration twalkwalk,n

we consider the shortest path between origin
and destination of the demand. This path is obtained with an A*-algorithm
which minimize the length of trip on the pedestrian network (36).

In the case of a car trip we consider the shortest path between origin and
destination. This path is obtained by an A*-algorithm applied on the road
network. The financial cost of the trip ccar,n is estimated from the product of
the path length by an average fuel consumption. The perceived trip duration is
only composed of the perceived car duration (βvehicletvehiclecar,n). The effective
trip duration tvehiclecar,n is estimated from the product of the path length by
an average speed.

The utility of bus alternative is more complex than walk or car alternative
because we consider in a bus trip the three situations: walking, waiting and
in-vehicle. The financial cost of a bus trip is independent from the demand
characteristics (origin, destination). We evaluate it by the average price of
a bus ticket. To evaluate the perceived duration it is necessary to consider
the three situations: walking, waiting and in-vehicle. We determine the better
path in term of perceived duration with an A*-algorithm applied on a graph
representation of both pedestrian and bus network (Fig. 6). The obtained path
establishes the effective waiting duration twaitbus,n

, effective walking duration
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Fig. 6. Graph representation of mixed pedestrian and bus network.

twalkbus,n
and effective in-vehicle duration tvehiclebus,n

. Note that the use of this
graph representation allows multiple connections.

This model allows to instantiate the Traveler agents of our simulation and
allows to determine their route within both pedestrian and bus networks.
Then, the results of demand model for personal transportation mode are also
used by the macroscopic traffic model.

4 Simulation software structure

Considering the previous specification of agents and environment, we have
implemented a multiagent simulation. In this section, we first describe the
simulation software, then, we present the implementation of the scheduler.
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Fig. 7. Screen shot of the decision support system.

4.1 An overview of the simulation software

The proposed simulation model has been entirely implemented in a decision
support software dedicated to the design and the evaluation of bus networks
(Figure. 7). This system is implemented in Java language and is linked to a
relational database which involves a Geographical Information System (GIS)
data and transport structures data. The main features of the system are:

• Visualization and edition of a bus network that take into account the road
network constraints.

• Static evaluation of a bus network through several measures: bus line length,
inter-stop length, covering population by bus-stop, etc.

• Simulation of buses activity for observation and evaluation of operations
occurring during a day.

Calibration and validation of the simulation have been performed from the
analysis of passenger counter data of the current Belfort city bus network.
These data correspond to the counting of passenger boardings and alightings
for each bus along a day. Then, the simulation has been applied for the design
and evaluation of a new bus-network solution of Belfort city.
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4.2 Implementation of the scheduler

While developping a multiagent simulator, management of time remains a
critical issue. We have defined in previous sections the behaviors of agents,
we detail in this section the process of agent evolution through the simulated
time.

In our simulation the time is managed in a discrete and synchronous way.
The simulation process activates all agents for a fixed period ∆t, then, after
this first step, each agent must exhibit the same simulated date to begin the
next step. This process is necessary to give a consistent observation of the
system evolution. This approach is appropriate if the step duration ∆t has no
significant influence on the simulation results. Indeed, through a simulation
step the agents have an asynchronous evolution and this might create time
inconsistency when they interact. For instance, when a Traveler agent and a
Bus agent move near a bus-stop. If the simulation step allows the bus to serve
the bus-stop and the traveler to arrive to the bus-stop, the traveler loading
depends on the relative time execution of the two agents. Thus, to exclude
time inconsistency we synchronize interactions by scheduling some events.

A wide range of the works dealing with distributed computer simulation are
interested in the problem of synchronization (37; 38). In our case, the goal of
the synchronization mechanism is to ensure that each agent interacts in well-
known order. This requirement is referred as the local causality constraint
as formulated in (39). To solve it, we use a conservative approach, i.e. our
algorithm avoids the local causality constraint violation. In practice, when an
agent needs to perform a synchronous interaction, it is suspended until it is
“safe” to process this interaction. In our previous example, the execution of
the Bus agent and the Traveler agent is suspended when the agents arrive
at the bus-stop. The two agents stay suspended while all other agents have
a smaller internal date. Finally, the Bus agent and the Traveler agent are
activated in the correct order to undertake the interaction.

5 Experimentation

The simulation model has been applied for the design and evaluation of a new
bus-network solution of Belfort city. The target area represents approximately
50 square kilometer and about 50, 000 citizen are covered by the bus-network.
The last includes 8 bus-lines which represent 35 kilometer of covered roads
as shown in Figure 5(a). For this study, input data comes from a domestic
travel inquiry (40). This survey provides the global transportation demand as
a temporal O-D matrix. In this case study, a significant number of measures
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Fig. 8. Simulation results for Belfort bus network, measure of the load of passenger.

has been produced by the simulation tool. In this section, we focus on two
representative results: measure of passenger load and measure of bus passenger
waiting time.

5.1 Passenger load of the bus-network

The load of the bus-network corresponds to the number of passengers in buses
at a given date. The simulation allows to observe the geographical and tem-
poral distribution of this measure in order to adjust, for example, the number
of buses. This measure is obtained by counting, at each simulation step, the
Traveler agents which are in Bus transportation state. The Traveler agents
that walk or wait a bus are not taken into account. Figure 8 plots the simu-
lated distribution of the bus-network load of passenger for a day. This measure
results in about 15, 000 bus trips. We can discern the peak periods at 7, 12
and 17 o’clock which are commonly observed in urban traffic.

These measures allow to locate overload of bus and unused buses. Then, for a
specific itinerary and a specific hour the number of buses can be adapted to
avoid load problems.

5.2 Passenger waiting time

The previous load of passengers measure allows to give a first evaluation of
the bus network considering the operator point of view. The passenger waiting
time, discussed in this section, is a relevant measure to analyze bus network
from a passenger’s satisfaction point of view. The total waiting time for a
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bus trip corresponds to the sum of (i) the waiting time at the origin station
and (ii) the waiting time at connections. In our simulation each agent keeps
the simulating date of each state change. Thus, after a trip, a Traveler agent
can calculate its waiting time. Figure 9 shows the average waiting time for
different number of active buses on the network. Below a certain number of
buses, a correct transportation service cannot be guaranteed. In the case of
the studied bus network, if the objective is to obtain an average waiting time
of 10 minutes, then the minimum number of buses must be 36. These values
confirm the ones expected by the operators of Belfort bus-network.

Schedules of buses, and consequently travelers waiting time, result in emergent
phenomena as bus queues. This phenomenon occurs when two close buses serve
the same itinerary. The bus that follows the head one has less passengers than
the other, because this last one serves the bus-stops just before it. Then, the
following bus spends less time at bus stops and catches the first one up. This
situation is commonly observed in reality and the simulation tool can prevent
it.

The simulation allows several other measures on bus network efficiency like
the bus saturation and the lack of passenger on bus-stops. Modeling buses
and travelers as agents makes easy these kind of measures. Thus, most of
evaluations to improve bus networks efficiency can be implemented through
the proposed multiagent simulation tool.
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6 Conclusion

In this paper, a multiagent simulation of bus networks has been presented. The
model combines buses operation, traveler behaviors and a road traffic model.
We shown that an agent-based approach allows to design such autonomous,
dynamic and interacting entities. Moreover, this approach gives a solution
to integrate an individual-centered view of buses and passengers within a
macroscopic model of traffic. This model has been applied and validated on
a real case study. Authorities, which manage the bus network of Belfort town
(France), used the different functionalities and measures of our simulation tool
to design new transportation solutions.

The main perspective of this work is to evaluate transit network policies (41).
They are usefull to regulate bus networks when some particular events happen
during missions (e.g. accidents, traffic jam, etc.). Modeling and measuring the
efficiency of these strategies is an interesting challenge.

Forthcoming works will consider other modes of public transport, and then
the extension of the traffic model to a multi-scale one. It concerns the integra-
tion of a mesoscopic model of vehicles in traffic. This objective must provide
more realistic bus movements and integrate traffic scenarios as accidents or
roadworks.
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