
A Heuristic Approach to Automated Forest Road
Location

David Meignan, Jean-Marc Frayret, Gilles Pesant, and Mathieu Blouin

Abstract: An optimization problem arising when planning forest harvesting operations is the location of new access
roads. The new roads must cover several areas to be harvested at minimum cost. This problem is of economical and
environmental relevance in the domain of forestry. In this study, the problem is expressed as a P-forest problem in a
graph. It consists in determining a set of tree structures in a graph that covers a set of vertices corresponding to harvest
areas. The objective is to minimize the sum of construction costs and harvesting costs. In addition to the location of
roads, the P-Forest problem has several relevant applications including public transport, electricity transmission, roads,
pipelines and communication networks design. This paper presents a Greedy Randomized Adaptive Search Procedure
(GRASP) to solve this problem. The heuristic was implemented on a decision support system and computational
experiments were conducted on randomly generated and real instances to demonstrate the performance and practical
efficiency of the proposed approach. A comparison with manually designed forest road networks on the real instances
shows a clear advantage for the proposed method.

Résumé: Un problème important d’optimisation intervenant dans le cadre de la planification des opérations forestières
est la localisation de nouveaux chemins d’accès pour le débardage. Les nouveaux chemins forestiers doivent couvrir un
ensemble de zones de récolte à un coût minimum. Ce problème est d’une importance économique et environnementale
majeure pour le secteur forestier. Dans cet article, le problème est exprimé sous la forme d’un problème de P-arbres
dans un graphe. Il consiste à déterminer un ensemble de structures arborescentes dans un graphe de manière à couvrir
indirectement les points qui correspondent aux zones à débarder. L’objectif est de minimiser les coûts de débardage
et de construction de chemin. Ce problème d’optimisation trouve également des applications dans différents domaines
tels que la conception de réseaux de transports, de réseaux électriques, de routes, de conduites et de réseaux de
télécommunications. Nous proposons une procédure de recherche gloutonne adaptative pour résoudre ce problème. Cette
heuristique a été intégrée à un système d’aide à la décision et testée sur des instances générées aléatoirement ainsi que
sur des scénarios réels. Afin de démontrer l’efficacité ainsi que l’aspect opérationnel de l’approche, les résultats ont été
comparés à des réseaux conus manuellement. Cette comparaison indique un net avantage en faveur de notre approche.

1. Introduction
Due to the evolution of environmental and economical as-

pects in forestry, there is a continuing need to find efficient op-
timization methods in this application field. Forest harvesting
planning, that considers all operations, from cutting to deliver-
ing at processing plants, addresses several significant optimiza-
tion problems. In [Rönnqvist, 2003] the author reviews the ma-
jor optimization problems in forestry. Most of these problems
are hard combinatorial optimization problems of large size or
problems that require a high quality solution in a small amount
of time. In addition, these problems involve a wide variety of
data (geographical, economical, legal and agronomical).

The problem considered in this paper is a network design
problem that consists in determining the roads that will be used
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Mathieu Blouin. FPInnovations, 570 St-Jean Blvd., H9R 3J9,
Pointe-Claire, Canada.
1 Corresponding author (e-mail: jean-marc.frayret@polymtl.ca).

to transport trees or logs from harvested areas to processing
plants or intermediate storage. This network design problem
appears at different scales of harvest planning. When the en-
tire supply chain of forest products is considered, the problem
consists in determining the flows on a given road network to
satisfy the demand of the forest product industry. This stage of
planning is at the tactical level [D’Amours et al., 2007]. In this
case, the objective of the network design problem is usually to
minimize transportation and road maintenance costs over sev-
eral time periods [Karlsson et al., 2004]. This paper addresses
a planning problem that is closer to the operational scale and
that consists in determining the location of new roads to ac-
cess harvest areas. Contrary to the network design problem in
the global supply chain, the costs to optimize when determin-
ing new roads are road construction costs and total harvesting
costs that include logging and hauling costs. In addition, the
location of the new roads must satisfy several constraints such
as environmental, topological and soil constraints. This road
location problem is of great economic and environmental im-
portance. Environmental issues include the respect of environ-
mental regulations, the reduction of the access road network
size and the minimization of environmental impact such as the
limitation of erosion.

The underlying optimization problem consists in minimiz-
ing harvesting cost and road construction cost. These two costs
result in two conflicting objectives that should not be addressed
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separately. The harvesting cost may be reduced by implement-
ing a dense road network that facilitates the access of harvest
areas. However, such a dense network generates high con-
struction costs. Conversely, limiting the number and length of
new roads may reduce the total construction cost, but a sparse
road network increases harvesting costs because harvest areas
are less accessible. In this sense, the design of a forest road
network must achieve a trade-off between harvesting cost and
construction cost [Chung et al., 2008]. The integration of both
costs is a challenging aspect of the problem.

In [Clark et al., 2000], the authors investigate the problem
of access road network design in combination to the problem
of scheduling the stands to harvest. The problem consists in
determining the temporal planning of road building and stands
to harvest, with the objective to maximize the revenue gener-
ated from harvesting stands and minimizing road costs. In the
study of [Clark et al., 2000], the spatial road design problem
is reduced to a minimum spanning tree problem, i.e. the prob-
lem of finding a network that connects a set of points without
any intermediate point. In this model, harvesting costs depend
on the temporal planning of road building and not to the dis-
tance between access roads and areas to harvest. Similarly,
Weintraub and Murray [2006] describe a model for the spatial
and temporal road design problem and review some exact and
approximate solution methods. The proposed model does not
take into account the determination of the location of the roads
which is determined manually by the planner.

Dean [1997] investigates the forest road network design prob-
lem using a model similar to the Steiner tree problem. He as-
sumes that a set of destination points for the roads is known
and thus does not consider the minimization of the distance
between access roads and areas to harvest. He proposes some
heuristic methods based on the minimum path heuristic for the
Steiner tree problem [Takahashi and Matsuyama, 1980]. Later,
Murray [1998] provides a formal definition of the problem de-
fined by Dean [1997].

Along the same line, Anderson and Nelson [2004] as well
as Stückelberger et al. [2007] propose some heuristics to solve
the forest road network design problem. They consider only
the construction cost that reduces the problem to a Steiner tree
problem in a graph. However, they propose some methods to
generate the underlying graph according to topographical and
operational constraints. In these two studies, the heuristics are
also based on the minimum path heuristic.

Epstein et al. [2006] and Legues et al. [2007] investigate the
machinery location and road network design problem. This
problem consists in determining the location of harvesting ma-
chinery and the location of access roads considering topograph-
ical constraints, harvesting costs and construction costs. These
two studies integrate in the problem model construction costs
and harvesting costs. This last cost depends on the distance be-
tween areas to harvest and machinery. The proposed heuristic
solution approaches are based on the same strategy that iter-
atively determines machinery location and then connects it to
existing roads or exit points. However, these approaches are
more suited to steep terrains that necessitate the location of
equipment such as towers to perform aerial cable harvesting.

The access road location problem addressed in the rest of the
paper is modelled as a P-Forest Problem (PFP). In this prob-
lem, potential road segments form a graph and areas to harvest

correspond to vertices to cover. The problem consists in de-
termining a road network of minimum cost that indirectly cov-
ers all vertices to cover, i.e. determining a road network from
which all areas to be harvested are accessible. The PFP model
includes both harvesting costs and construction costs. Con-
trary to the model presented in [Epstein et al., 2006], indirect
covering implies that harvesting may start at any point of the
new roads or existing roads. This aspect of the model appears
most appropriate to represent hauling operations with ground
equipment such as tractors or skidders instead of aerial equip-
ment. Furthermore, the PFP is able to represent the access of
harvest areas from existing roads. This last case is particularly
interesting to determine whether it is advantageous to extend
an existing road network with new access roads.

In this study, a Greedy Randomized Adaptive Search Proce-
dure (GRASP) is proposed to solve the PFP. In comparison to
previous heuristics approaches for solving the forest road net-
work design problem, the proposed heuristic simultaneously
optimizes construction and harvesting costs through a local
search procedure. On real instances, GRASP provides an ini-
tial solution within a few seconds, and the solution can be im-
proved by running GRASP for several iterations.

The proposed heuristic has been implemented on a deci-
sion support system and tested on randomly generated and real
problem instances. Three sets of experiments are performed
in order to validate the proposed heuristic approach. First, the
robustness of the heuristic strategy is evaluated. Then, the pro-
posed GRASP is compared with a branch-and-bound approach
to evaluate the performance in terms of solution quality and
computational time. Finally, results on real problem instances
are compared to solutions manually planned using PlaniRoute
[FPInnovations] a Geographical Information System (GIS) ap-
plication. This last part of the experiments is aimed at demon-
strating the practical efficiency of the proposed approach on
real instances.

2. Access road location

2.1. Description of the problem
The studied problem of determining the location of new ac-

cess roads corresponds to decisions at the tactical level since
the planning horizon covers several months and additional op-
erational decisions must be taken to implement a solution to
the problem. However, this problem necessitates a high level
of detail usually related to the operational scale.

On a practical level, the access road network is elaborated
by an expert considering a planning horizon of approximately
6 to 12 months. Then, this plan is validated by authorities that
examine the compliance with applicable laws and regulations.
Finally, the validated road network is implemented with possi-
ble minor adjustments made on the ground. The map of new
access roads, in most cases, is determined with the help of a
Geographical Information System (GIS). In addition, special-
ized software can also be used to support the expert in this task.
These tools aim at reducing the costs of planned operations and
at better integrating legal, environmental and operational con-
straints [Sessions et al., 2006]. Despite the use of a GIS, the
location of access roads remains a tedious task because of the
large number of input data and constraints, and of the combi-
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natorial complexity of the problem. The planner must also find
a good balance between harvesting and construction costs.

Three types of input are needed to design a forest road net-
work in the context of the study: legal and environmental con-
straints, geographical data, and operational data and constraints.

First, legal and environmental constraints mainly consist of
the definition of harvestable areas and protected areas. Land
use planning and environmental protection regulations can limit
the location of forest activities including harvesting and road
building. For instance, in Quebec, forest operations are subject
to the Forest Act [Gouvernement du Québec, 2010]. This set
of regulations cover the protection of lakes and watercourses
by defining some minimum distances allowed for forest oper-
ations, and establish the rules for locating and dimensioning
bridges and culvers. It also concerns the protection of ecolog-
ical reserves, archeological sites and natural habitats of some
species such as caribous and herons, by prohibiting forest op-
erations around these territorial units.

Second, the design of a forest road network also requires a
large amount of geographical information typically stored in a
GIS. These data include the areas to harvest, topological and
soil data, the existing road network, and forest characteristics.
Among these data, soil type, drainage and slope are the major
criteria to determine the feasibility of roads and estimate con-
struction cost. Soil type is determined by its composition, for
instance rocks, gravels, sand, silt or clay, and the surface soil
thickness. A good soil texture with sufficient depth is neces-
sary to construct and exploit an access road. The drainage is
related to the slope and the soil type. A well-drained soil is
essential to ensure a sustainable use of the roads. Moreover,
the road grade should be kept as low as possible. For the sce-
narios studied in this paper, the access roads cannot exceed a
slope of 15% or be constructed on unstable soil or soil without
deposits.

Finally, operational data is necessary to determine the type,
costs and productivity of harvesting machinery. For harvest-
ing operations, appropriate equipment must be selected in or-
der to minimize soil deterioration and ensure productivity. For
instance, grapple skidders should be used on small extraction
distances, and clambunk forwarders on longer distances. Irre-
spective of the harvesting machinery, the major criterion of the
harvesting cost is the distance between the access road and the
area to harvest. In addition to productivity and cost parameters,
a maximum harvesting distance to road is also considered. In
most situations, skidding or yarding at a distance greater than
400 meters is too expensive and therefore should be avoided.

Costs and constraints of a forest road network are evaluated
from these three sources of data. As a first constraint, the new
roads have to be connected to existing roads or exit points de-
fined by the planner. The exit points serve as potential junc-
tions between new roads and existing roads not visible on the
map. The set of new access roads must form a forest structure
(in graph theory terminology) in such a way that all new roads
can be reached from an existing road or an exit point. Then,
the new roads cannot be constructed on protected areas, steep
slopes, and other natural barriers for road construction such as
lakes or large rivers. Finally, the forest road network, includ-
ing existing roads and exit points, must cover all harvest areas.
A harvest area is covered when the entire area is within the
maximum harvesting distance to a road, taking into account

all harvest barriers. Barriers considered for this coverage con-
straint may be different from those for construction. For in-
stance, rivers are natural barriers for harvesting operations but
not necessary for road construction.

The cost of a road network includes construction costs and
harvesting costs. Since the optimization problem focuses on
the location of new forest roads, regardless of the routing prob-
lem to transport trees or logs to processing plants or interme-
diate storage, the on-road transportation cost is neglected to
focus on legal, environmental and topological aspects of roads
location.

The construction costs are determined by the length of road
segments and a combination of three other factors: soil type,
slope and drainage. The cost of water crossing structures is
included into road construction costs as a penalty when a for-
est road crosses a watercourse. Optimization of the location of
water crossing structures is not investigated in this paper as it
is an optimization problem in itself. However, the water cross-
ing penalties can be adjusted to reflect the costs and constraints
of these structures. Note that the PlaniRoute software [FPIn-
novations] offers a module for sizing and evaluating bridges
and culverts in accordance with environmental regulations of
Quebec and Ontario Provinces. Harvesting costs correspond
to operating costs for cutting and limbing trees as well as the
costs of moving trees to the roadside by skidding, yarding, or
forwarding them. The harvesting costs of a forest section are
calculated from its average distance to the nearest road, the
volume of timber that can be extracted, and the harvesting pro-
ductivity. The optimization problem’s objective is to minimize
the sum of these two antagonistic costs. Indeed, if harvesting
costs are optimized independently of construction costs, lots of
new roads are designed to reduce the distance to the areas to
harvest, resulting in high construction cost, and conversely.

2.2. Problem formulation
In order to tackle the problem, the studied terrain is divided

into square cells 50 meters wide. This width has been chosen
because it corresponds to the minimum curve radius of roads
and also to the average precision between the planning and the
implementation of roads. Using this grid, the data are then
projected to a directed graph as in [Epstein et al., 2006] and
[Chung et al., 2008]. A vertex is defined at each cell’s center,
and two types of arcs are defined: potential road segments and
harvesting arcs. As shown in Figure 1, the road segment arcs
connect each vertex to its eight neighbors while harvesting arcs
connect the vertices up to the maximum harvesting distance.
A construction cost and harvesting cost is associated to road
arcs and harvesting arcs respectively. Some arcs are removed
from the resulting graph in order to consider construction and
harvesting barriers. These barriers include, for instance, maxi-
mum slope (steep terrain) for road arcs, and rivers for harvest-
ing arcs.

Based on the graph defined above, the problem consists in
determining a set of tree-like paths of minimum cost that indi-
rectly covers the vertices located on cells to harvest. A vertex is
said to be indirectly covered if one of its harvesting arcs leads
to a road at a distance not exceeding the maximum harvest-
ing distance. The problem can be viewed as a forest location
problem or P-Forest Problem (PFP) [Tamir and Lowe, 1992].
The PFP belongs to the category of extensive facility location
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Fig. 1. Generation of the graph; (a) road arcs on steep slopes
or non-building land areas are removed, (b) harvesting arcs that
cross a barrier (here a river) are not considered.

problems, which includes location problems where facilities
are generalized to paths, trees, cycles or subtrees instead of
points [Mesa and Boffey, 1996], [Labb et al., 1998]. Follow-
ing the classification introduced in [Mesa and Boffey, 1996],
the studied problem is defined as follow:

• Network: the underlying network structure is a general
graph,

• Demand: the demand, here the cells to be harvested, is
located at the vertices,

• Facilities: the structure to be located is a forest,

• Facility extremities: the structural extremities are ver-
tices,

• Decision criterion: the decision criterion is the construc-
tion cost (related to the total length of the new roads)
added to the weighted min-distance-sum (sum of the min-
imum distances between cells to be harvested and access
roads),

• Restrictions: each tree-like path must be connected to a
existing road or an exit point, and each harvest vertex
must be indirectly covered,

• Type of facilities: the facilities are central i.e. the roads
must be as close as possible to the harvest vertices.

Several papers in the operations research literature have stud-
ied variants of the PFP. However, most of these studies con-
sider the underlying network as a tree. A review of the most
important contributions can be found in [Boffey and Narula,
1998], [Hutson and ReVelle, 1993] (indirect covering tree prob-
lem), [Kim et al., 1996] (single-tree location problems) and
[Tamir and Lowe, 1992] (P-forest problem). These problems
can fall into the category of bi-level network design problems,
considering that the higher level consists in designing the fa-
cilities, and the lower one deals with the location of the facil-
ities [Balakrishnan et al., 1991]. In addition to the location of
roads in a logging region, these optimization problems have
several relevant applications including public transport, elec-
tricity transmission, roads, pipelines and communication net-
works [Boffey and Narula, 1998].

2.3. Mixed-integer programming model
The following mixed-integer programming model represents

the forest road network design problem as a PFP.

Let G(V,E ∪A) be a bi-level directed graph with V the set
of vertices, E and A two sets of arcs. Two subsets of vertices,
R ⊂ V and B ⊆ V are defined. R is the set of vertices where
existing roads and exit points are located. Vertices in B cor-
respond to harvest vertices, i.e. the cells to be harvested. For
each harvest vertex i ∈ B, wi denotes the quantity of timber to
be harvested in the corresponding cell.

The set of arcs E are potential road segments and A are
harvest arcs, i.e. the segments that can be used to harvest cells
from access roads. With each road arc in E is associated a
strictly positive cost cij corresponding to the construction cost
along the arc (i, j). For the set of harvest arcs A, the cost dij
corresponds to the unit cost to harvest the cell i from an access
road located at vertex j. The set of arcs A is defined in such a
way that no arc longer than the maximal harvesting distanceD
is included. Thus, the maximum harvesting distance constraint
is implicitly contained in the model.

Two sets of binary decision variables, xij and yij , and in-
teger decision variables zij are introduced to represent a solu-
tion. The new access roads are described by xij , and yij indi-
cates from which road location a cell is harvested. The values
of these two decision variables are defined as follow:

xij =

{
1 if arc (i, j) is a new access road segment,
0 otherwise.

yij =

{
1 if the cell at i is harvested from j,

0 otherwise.

The integer decision variable zij corresponds to the timber
flow from cells to be harvested to existing roads and exit points.
The value of zij corresponds to the total timber quantity that
pass through the arc (i, j). The PFP can be stated as follows:

[1] Minimize

 ∑
(i,j)∈E

cijxij +
∑

(i,j)∈A

dijyijwj


Subject to:

[2]
∑

i∈V :(i,j)∈E

zij +
∑

i∈V :(i,j)∈A

yijwi =
∑

k∈V :(j,k)∈E

zjk

∀j ∈ V \R

[3]
∑

(i,j)∈E:j∈R

zij +
∑

(i,j)∈A:j∈R

yijwi ≥ T

[4] zij ≤ xijT ∀(i, j) ∈ E

[5]
∑

k∈V :(j,k)∈E

xjk ≥ yij ∀(i, j) ∈ A : j /∈ R

[6]
∑

j∈V :(i,j)∈A

yij ≥ 1 ∀i ∈ B

[7] xij ∈ {0, 1} ∀(i, j) ∈ E
[8] yij ∈ {0, 1} ∀(i, j) ∈ A
[9] zij ∈ {0, . . . , T} ∀(i, j) ∈ E
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The first term of the objective function corresponds to the
construction cost and the second one is the harvesting cost.
Constraints 2 to 4 ensure the arborescent structure of the new
roads in the graph. More precisely, the flow balance is guaran-
teed with Constraints 2, each flow ends at an existing road ver-
tex or an exit point with Constraints 3, and Constraints 4 link
the flows and the arcs of the new access roads. In Constraints 3
and 4, the parameter T corresponds to the total timber quantity
(
∑

i∈B wi). Constraints 5 and 6 ensure that all demands are
allocated to a vertex in the solution or a root vertex. Finally,
Constraints 7 to 9 require all decision variables to be integer
with specific bounds.

In addition to the interest of a formal definition of the prob-
lem, this mixed-integer programming model has been used to
obtain optimal solutions on small instances. These results are
presented in Section 4.

3. Solution methodology

Several aspects of the problem have been considered to choose
the optimization method. The first requirement of the opti-
mization procedure consists in solving large problem instances
in a limited amount of time. The real instances used for compu-
tational experiments, contain between 8 000 and 12 000 cells,
which correspond to a map of 3 000 hectares for the largest
instance. Another aspect considered for choosing the opti-
mization method is the limit in modelling all features of the
problem with the provided data. Despite the large amount of
accurate data used for instantiating a problem instance, it is
hardly possible nor even desirable to avoid planner’s interven-
tion for obtaining a realistic solution. For instance, in some
cases, the choice between the construction of a road on a steep
slope and the construction of a water crossing structure cannot
be decided only on the objective function and must be deter-
mined by a forester. Thus, solutions need to be adjusted by
an expert. The objective, in this context, is to develop an opti-
mization procedure suitable for a decision support system. In
this kind of system, an expert must be able to iteratively adjust
parameters, constraints and initial data, according to solutions,
in order to better fit the reality. Expert’s interactions can also be
useful to balance the weight of different inputs that are aggre-
gated in the optimization model. A heuristic approach seems
appropriate for these different aspects.

This section presents a Greedy Randomized Adaptive Search
Procedure (GRASP). The choice of this simple metaheuris-
tic without sophisticated memory has been motivated by the
small number of solutions the method can obtain in a few min-
utes considering the size of the instances and software require-
ments. In addition, GRASP is well suited for a decision sup-
port system as it requires a limited parameter setting. Finally,
despite the simplicity of the approach, the results obtained by
GRASP are satisfactory according to the experts comments.

3.1. GRASP
GRASP is a metaheuristic that iteratively performs two steps

until a stopping criteria, usually a maximum number of itera-
tions, is reached. The first phase consists in a greedy random-
ized construction of a solution, and the second one is a local

search that improves the solution until a local minimum is ob-
tained. A review of GRASP, its variants, and some applications
is given in [Resende and Ribeiro, 2003].

Contrary to trajectory or population-based metaheuristics,
in GRASP the exploration of the search space is mainly per-
formed during the construction of the solutions. This con-
struction involves a “greedy function”, and also a part of ran-
domness. The construction phase consists in incorporating el-
ements in a partial solution until a complete solution that sat-
isfies constraints is obtained. To select the element to add to a
partial solution, a list of candidate elements is created. Then,
the best elements according to the greedy function are selected
to form the restricted candidate list (RCL). Finally, an element
in the RCL is randomly chosen to be incorporated into the par-
tial solution.

In GRASP the size of the RCL is determined by a parameter
α. In the implementation of GRASP for solving the PFP, this
parameter corresponds to the proportion of candidates selected
to form the RCL. If α is set to the value 0, the construction
phase is equivalent to a pure greedy construction. At the oppo-
site, the case α = 1 corresponds to a random construction. The
appropriate choice of this value is critical, and using the same
value to solve different problem instances may hinder finding
high-quality solutions [Resende and Ribeiro, 2003]. In the pro-
posed GRASP, the value of this parameter is determined by
an adaptive parameter strategy inspired by Reactive-GRASP
[Prais and Ribeiro, 2000] as well as Estimation of Distribution
Algorithms (EDA) [Pelikan et al., 1999]. The value of α is
randomly determined using a normal probability distribution
bounded between 0 and 1. The mean and variance parameters
of the normal distribution dynamically evolve during the solv-
ing process and are computed from a sample of size E of the
values of α that lead to the previous best solutions. The normal
probability distribution is exploited to favor the convergence
of the variable in the same way as the univariate marginal dis-
tribution model [González et al., 2002]. This self-adjustment
method allows replacing the parameter α with a less sensitive
parameterE. An evaluation of this adaptive parameter strategy
is presented in Section 4.1.

The proposed implementation of GRASP for the PFP is de-
scribed in Algorithm 1. An iteration starts by determining the
value of the parameter α for the construction procedure based
on the results of the previous iterations (line 3). Then, a new
solution is generated and improved (lines 4-6). This solution is
stored if its cost is the best found over the iterations (lines 7-9).
A randomized two-step greedy construction procedure and a
variable neighborhood descent procedure are respectively used
for the construction phase and the improvement phase. These
two procedures are described in the following sub-sections.

3.2. Two-step greedy randomized construction procedure
The two-step greedy randomized procedure provides initial

solutions for the PFP which are then improved by local search.
This procedure is based on the minimum path heuristic for
the Steiner tree problem [Takahashi and Matsuyama, 1980],
[Hwang et al., 1992] and is also related to Prim’s algorithm for
the minimum spanning tree problem. The basic principle of
the minimum path heuristic and Prim’s algorithm is to grow a
tree by iteratively adding new branches that connect the cur-
rent tree to a remaining terminal vertex. At each iteration, the
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Algorithm 1: GRASP, greedy randomized adaptive search
procedure for the PFP

Data: graph, the graph in which roads have to be located.
maxIterations, the number of iterations of the
GRASP.

Result: bestSolution, sets of arcs that represents the best
found road network.

bestSolution← ∅1
for k = 0 to maxIterations do2

α← DETERMINERCLPARAMETER( )3
coveringVertices←4
SELECTCOVERINGVERTICES(graph, α)
currentSolution←5
MINIMUMPATHHEURISTIC(graph, coveringVertices)
currentSolution← VARIABLENEIGHBORHOODDES-6
CENT(currentSolution)
if bestSolution= ∅ or f(currentSolution) <7
f(bestSolution) then

bestSolution← currentSolution8
end9

end10
return bestSolution11

algorithm chooses the smallest-cost branch and adds it to the
tree.

Contrary to the Steiner tree problem and the spanning tree
problem, there is no set of vertices to be spanned for the PFP.
Instead, harvest vertices must be indirectly covered, i.e. each
harvest vertex must be harvestable from a road vertex. To over-
come this difference, the first step of the greedy randomized
procedure consists in determining a set of covering points (Al-
gorithm 1, line 4). These points are defined so that all vertices
to be harvested are covered. Then, the second step uses the
minimum path heuristic to determine a set of access roads that
span the covering points (Algorithm 1, line 5). In other words,
the algorithm first locates a set of crossing points from which
all areas to be harvested are covered. Then, these points are
connected to the existing roads and exit points to form the new
access road network.

In order to be used in a GRASP, the construction procedure
must produce different solutions on successive calls. The ran-
domization, necessary for the exploration of the search space,
occurs at the first step of the construction procedure. This first
step, that locates a set of covering points, is described by Al-
gorithm 2. In this greedy randomized procedure, the set of
vertices to cover is initialized with harvest vertices that are not
covered by existing roads or exit points (line 2). While there
remain uncovered vertices to be harvested, a RCL of potential
covering vertices is determined (line 4). The candidate selec-
tion to form the RCL is based on the number of remaining
demands to cover (vertices that do not cover any remaining
demands are not considered). A portion α of the best candi-
date vertices is selected to form the RCL. Then, a vertex is
randomly chosen in the RCL and added to the set of cover-
ing vertices (lines 5-6). Finally, covered demands are removed
from the set of demands to cover (lines 6-7).

The second step, that spans the covering vertices with the
minimum path heuristic, is described by Algorithm 3. In this
procedure, the terminals to span correspond to covering ver-

Algorithm 2: SELECTCOVERINGVERTICES, greedy ran-
domized procedure for the selection of covering vertices

Data: graph, the graph in which covering vertices have to
be located. α, relative size of the restricted
candidate list (RCL).

Result: coveringVertices, a set of vertices that indirectly
covers harvest vertices.

coveringVertices← ∅1
toCover← graph.harvestVertices −2
VERTICESCOVERED(graph.existingRoadVertices)
while toCover 6= ∅ do3

rcl← COVERINGVERTICESRCL(α, toCover)4
vertex← RANDOMSELECTION(rcl)5
coveringVertices← coveringVertices ∪{vertex}6
toCover← toCover − VERTICESCOVERED(vertex)7

end8
return coveringVertices9

Algorithm 3: MINIMUMPATHHEURISTIC, connects cov-
ering vertices with minimum path heuristic

Data: graph, the graph in which roads have to be located.
coveringVertices, the set of vertices to be connected
by roads.

Result: forest, a set of arcs that corresponds to the
minimum cost roads between existing road
vertices and covering vertices.

terminals← coveringVertices1
forest← ∅2
forestVertices← existingRoadVertices3
while terminals 6= ∅ do4

path← MINIMUMPATH(forestVertices, terminals)5
forest← forest ∪ path6
forestVertices← forestVertices ∪ VERTICES(path)7
terminals← terminals − VERTICES(path)8

end9
return forest10

tices determined by the previous procedure (line 1). Since the
result of the second step is a forest, the set of forest vertices is
initialized with root vertices (line 3). In the algorithm’s core,
while all terminals are not included in the forest, a path from
a forest vertex to a remaining terminal is computed and added
to the forest. The added path, computed by the MinimumPath
function (line 5), is a minimum cost path determined using Di-
jkstra’s algorithm between forest vertices and remaining termi-
nals. Note that the successive calls to Dijkstra’s algorithm are
optimized by re-using previous data of graph exploration.

This two-step greedy randomized construction procedure may
have a limitation for solving the PFP. The procedure takes into
account construction costs cij but harvesting costs dij are not
directly used. Harvesting costs may be integrated in the heuris-
tic function to choose the covering vertices in the first step.
But, as the objective is to determine the minimum number of
covering points with the minimum harvesting costs, the ratio
between the number of covered demands and the harvesting
costs is difficult to tackle as a heuristic function. In addition,
it leads to inferior results than the adopted heuristic function
based on the number of covered vertices. In any case, this
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Fig. 2. Moves in neighborhood structures.

limitation is resolved by applying a variable neighborhood de-
scent procedure that considers both construction and harvest-
ing costs.

3.3. Variable neighborhood descent procedure
Variable neighborhood descent is a local search procedure

that uses several neighborhood structures [Hansen and Mlade-
nović, 2003]. A neighborhood structure defines a set of lo-
cal modifications or moves that can be applied to a solution
in order to generate new solutions. A local search procedure
uses such moves to explore the solution space. In the proposed
implementation of GRASP, a variable neighborhood descent
procedure is used to improve the cost of the solutions gener-
ated by the two-step greedy randomized construction proce-
dure. Thus, the cost of an initial road network can be im-
proved by applying successive small modifications. The im-
plemented variable neighborhood descent exploits three neigh-
borhood structures in which a new solution is obtained respec-
tively by adding, removing or swapping (exchanging a vertex
with another one) a vertex in an initial solution. On these three
neighborhood structures, the neighborhood solutions consid-
ered are restricted to the solutions that satisfy constraints, and
thus, removal or swapping operations are performed only if all
harvest vertices are covered by the resulting roads. Moves us-
ing these neighborhood structures are illustrated in Figure 2.

For the three examples in Figure 2, the addition, removal
or swapping of vertices is performed on a path, but these op-
erations can also be performed at a leaf or a branching. For
instance, Figure 3 illustrates a removal move and a swap move
performed at a branching.

Fig. 3. Removal move and swap move at a branching.

The three neighborhood structures are used in a variable
neighborhood descent procedure described in Algorithm 4. In
this procedure, the current solution is improved until a local
optimum with regard to the three neighborhood structures is
reached. Note that the evaluation of solutions considers both
construction and harvesting costs, and thus, contrary to the
greedy construction procedure the local search is guided by
the entire objective function.

In the algorithm, Nk, k = {1, 2, 3} is the set of neighbor-
hood structures. The variable neighborhood descent consists,
first, in finding a local optimum using the first neighborhood
structure N1. Then, the local descent continues with N2. If a
better solution has been obtained with this neighborhood struc-
ture, the first structure is used for the next local descent, other-
wise, it usesN3. This process continues until all neighborhood
structures have been explored in a row with no improvement of
the solution.

In order to obtain better computational time performance,
the selection of a neighborhood solution (lines 6 to 10) uses
a first improvement policy, i.e. the first neighbor whose cost
value is smaller than that of the current solution is selected.
In addition, the neighborhood structures are sorted by size as
suggested in [Hu and Raidl, 2006], and thus, vertices swapping
are performed first, then removal, and finally insertion.

4. Computational experiments

Three sets of experiments have been conducted to analyze
the efficiency of the proposed approach. Small generated prob-
lem instances have been used to evaluate the adaptive parame-
ter strategy of GRASP, and to compare the GRASP with results
obtained with the commercial MIP solver ILOG CPlex. Real
problem instances were used in the third experiment part aimed
to evaluate the GRASP solutions against manually planned so-
lutions. The goal of these experiments is twofold. First, the
performance of GRASP is quantitatively evaluated on small
instances. Second, the practical efficiency of the proposed ap-
proach is demonstrated on real instances.
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Algorithm 4: VARIABLENEIGHBORHOODDESCENT,
variable neighborhood descent procedure
Data: graph, the graph in which roads have to be located.

initialSolution, the initial road network to be
improved by local search.

Result: s, an improved road network, which is a local
optimum solution.

s← InitialSolution1
k← 12
while k ≤ kmax do3

move← false4
while HASNEIGHBOR(s, Nk) and not move do5

s’← NEXTNEIGHBOR(s, Nk)6
if f(s) > f(s’) then7

move← true8
s← s’9

end10

end11
if move then12

k ← 113
else14

k ← k + 115
end16

end17
return s18

4.1. Adaptive parameter setting of GRASP
In comparison to a classical GRASP procedure, the imple-

mented GRASP includes an adaptive parameter strategy pre-
sented in Section 3.1. This strategy allows to dynamically
adapt the parameter α that determines the size of the restricted
candidate list. In order to analyse the influence of this parame-
ter α of GRASP and to evaluate the efficiency of the proposed
adaptive parameter strategy, the results of the adaptive param-
eter strategy have been compared to the results of six fixed
parameter values: 10%, 20%, 40%, 60%, 80% and 100%.

A benchmark containing 15 small size instances, with prop-
erties similar to real ones, have been generated. They con-
tain between 25 and 100 vertices. Based on the analyses of
real scenarios, the generated instances consist of graphs with a
maximum of 8 connected road arcs to each vertex. The density
of vertices to be harvested is very high on harvestable areas,
and one to five percents of the vertices are existing roads or
exit points. The average and standard deviation of the ratio be-
tween construction costs and harvesting costs on real instances
have been used to generate the costs on small instances.

The GRASP was run with 200 iterations and the parameter
E of the adaptive strategy set to 25. The benchmark composed
of the 15 generated instances have been used for the computa-
tional experiments. The results on these instances are reported
in Table 1 for the adaptive parameter strategy and the six fixed
parameter settings.

For each problem instance, the table indicates the average
deviation on ten runs to the best parameter setting considered.
For instance, on problem number 11, the adaptive parameter
strategy obtains an average deviation of 0.61% to the best pa-
rameter setting considered which corresponds to the α value
of 10%. The best parameter settings are shown in bold type
and naturally correspond to an average deviations of 0%. In

addition, for each problem instance the rank of each parameter
setting is indicated. This rank gives additional information on
the performance of each setting independently of the size of
the gaps.

For fixed values of α, the maximum average deviation at-
tains 6% (instance number 3 with α = 10%). Considering all
problem instances, no fixed parameter value really dominates
the other ones. For instance, on problem number 6, small val-
ues of alpha give the best results, while on problem number 7
it is the larger values of alpha that give the best results. The
setting α = 60% gives the best average result for fixed α val-
ues, but has the fifth rank on three problem instances. These
points confirm that the value of the parameter α has an impact
on the results and, furthermore, that a fixed value of α does not
provide a robust parameter setting for GRASP.

For the proposed adaptive parameter strategy, the number
of problem instances for which this strategy obtains the best
average deviation and the first rank is not higher than for the
other parameter settings. However, the average deviation never
exceed 1%. In addition, the adaptive strategy reaches the best
overall average result with an average deviation of 0.23% and
an average rank of 1.93. This result indicates that on the set of
small instances the adaptive parameter strategy is more robust
than the considered fixed parameter settings.

4.2. GRASP and exact approach
In a second set of experiments, the results of the imple-

mented GRASP have been compared to the results of an exact
approach. Generated instances presented in the previous sec-
tion have been solved using ILOG CPlex 11 and the MIP for-
mulation described in Section 2.3. The computational time was
limited to ten hours on a PC with an Intel Core 2 Quad (2.83
GHz - 8Go of memory), using the default settings of the com-
mercial solver. The best integer solutions obtained by branch-
and-bound with CPlex are compared to the results of GRASP
in Table 2. The GRASP was limited to 500 iterations on the
same computer with E, the single parameter, sets to 25. The
computer used for the experiments has four cores, and thus,
can simultaneously run four threads. Both ILOG CPlex and the
implementation of GRASP exploit this parallelism. The paral-
lel implementation of GRASP consists in distributing the iter-
ations among the available processors [Martins et al., 2000].

Computational results are reported in Table 2. Columns
five and six respectively give the best integer solution values
and computational times in seconds obtained by branch-and-
bound on ILOG CPlex. The last three columns indicate the
average computational results for GRASP on ten runs. The
penultimate column reports the deviations between GRASP
and branch-and-bound solution values. For the branch-and-
bound approach, computational times become very important
for solving instances containing 100 vertices. A value of 36 000
seconds indicates that the branch-and-bound failed to solve op-
timally the instance within the limit of ten hours of compu-
tation. This result indicates that a “naı̈ve” branch-and-bound
approach is impracticable for solving real-size problems. The
maximum computational time for GRASP is 6.67 seconds, and
the average time of 1.13 second to complete 500 iterations
suggests that the implemented GRASP is suitable for solving
large-size problems. Considering solution values, the GRASP
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Table 2. Computational results on generated instances comparing branch-and-bound (ILOG CPlex) and GRASP.

Instance Branch and bound GRASP (500 it.)
Nb. Nb. demand Nb. Best Duration Avg. Dev. Duration

No. vertices points roots found (sec.) value (%) (sec.)
1 25 24 1 8 534.00 * 1.20 8 534.00 0.00% 0.33
2 25 24 1 5 933.00 * 0.22 5 933.00 0.00% 0.19
3 25 24 1 8 513.00 * 1.64 8 513.00 0.00% 0.25
4 25 23 2 5 197.00 * 0.14 5 197.00 0.00% 0.17
5 25 23 2 8 530.00 * 8.36 8 620.00 1.06% 0.26
6 49 48 1 15 066.00 * 1 231.81 15 066.00 0.00% 0.62
7 49 48 1 14 257.00 * 125.63 14 257.00 0.00% 0.34
8 49 47 2 13 918.00 * 217.31 13 918.00 0.00% 0.36
9 49 47 2 11 646.00 * 99.83 11 758.00 0.96% 0.22
10 49 46 3 18 360.00 * 16 728.17 18 632.00 1.48% 0.60
11 100 99 1 34 050.00 36 000.00 34 700.30 1.91% 1.96
12 100 97 3 29 254.00 36 000.00 27 922.50 -4.55% 1.38
13 100 97 3 24 405.00 36 000.00 24 405.00 0.00% 1.35
14 100 96 4 37 360.00 36 000.00 39 165.00 4.83% 2.25
15 100 96 4 24 334.00 36 000.00 24 388.40 0.22% 6.67
Average 13 227.62 0.39% 1.13

* Optimal solution value
reaches an optimal solution for seven of the ten instances opti-
mally solved using branch-and-bound. The deviations between
GRASP and branch-and-bound solution values do not exceed
five percent. In addition, the GRASP reaches a deviation of
0.39% on average in a few seconds. These results illustrate
the efficiency of the implemented GRASP in terms of solution
quality and computational times.

4.3. Real instances
Three harvesting maps located in Quebec have been con-

sidered to evaluate the GRASP on real instances. The studied
maps cover approximately 3 000 hectares each, which corre-
spond to a graph containing 12 614 vertices for the largest in-
stance. These maps correspond to sectors within larger forest
management units. A size of 3 000 hectares seems representa-
tive of sectors’ size in the province of Quebec. However, sizes
may vary from less than 50 hectares for specific tree species, to
more than 20 000 hectares in case of agreements with the Gov-
ernment. A sector covers several cutting blocks that share the
same primary road network. For the three considered maps,
the sectors are units in which operational decisions are taken.

The inputs grids of these real problem instances have been
produced using PlaniRoute [FPInnovations] a commercial soft-
ware of FPInnovations for which a demo version is available
upon request. In addition, real cost parameters have been used
to generate the graph.

From a planner’s point of view, the first map is the easiest
scenario among the three scenarios. Soil type, drainage and
slope are adequate for road construction, except for some rocky
hillsides. The second map contains many steep slopes, but the
deposits are sufficient. It is a map of average difficulty. The
last one is very difficult due to the steep terrain and the low
deposit.

For the three problems, forest roads have already been lo-
cated using a GIS by an expert in forestry. The GIS used for
these manually planned solutions gives an estimation of road

construction and harvesting costs to guide the planner, but do
not provide a computerized method to optimize the location
of roads. Note that the three manually planned solutions con-
sidered correspond to forest roads that have been designed in
a real situation, independently of this study, and implemented
with some possible minor adjustments in the field. In order to
compare the costs of manual and computerized solutions, the
road networks manually designed were evaluated using the ob-
jective function on the implemented software. Covering con-
straints are not entirely respected in manual solutions, and in
these cases the costs to harvest uncovered areas are not taken
into account. Therefore the manual solutions give a lower es-
timation of the real cost, which is not the case for the GRASP
approach. The GRASP was run using the same computer and
parameter setting than for previous experiments on generated
instances and computation time was limited to two hours.

The costs of manual solutions are compared with the ones
from the GRASP in Table 3. The evaluation considers both
construction and harvesting costs. In the table, the Gap columns
indicate the difference in percentage between the solutions man-
ually obtained and the computerized method. The GRASP
obtained an average gap of 11%, i.e. for these three real in-
stances, the GRASP generates solutions whose cost is on aver-
age 11% lower than the solutions manually planned. Manual
and computerized solutions for the third problem instance are
represented in Figure 4. For this scenario, the computerized
solution reduces the cost of the road network by 8.37%. This
significant gap is obtained by reducing the total length of the
roads by almost 3 kilometers and reducing the number of wa-
ter crossing structures. Even if the computerized solutions may
need to be adjusted by an expert, they are good initial solutions
to support decisions. In addition, these solutions allow saving
time for the planner in the design of an initial network.

The advantages of the GRASP approach reported by the ex-
pert are, first, to suggest globally good solutions that respect
slopes, building difficulty and coverage constraints. Then, the
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Table 3. Results on real instances comparing manual and GRASP approaches.

Map Manual GRASP
Map size Nb. Solution cost Solution cost Gap Manual vs.

(ha) vertices ($) ($) GRASP (%)
Laurier 2 900 8 084 408 882 364 039 10.97%
Meunier 2 881 11 526 697 329 599 699 14.00%
Parent 3 153 12 614 700 381 641 788 8.37%
Average 11.11%

Fig. 4. Solutions for scenario 3 “Parent”, (a) manual solution, (b) GRASP solution. Light gray areas correspond to construction or
harvest barriers such as lakes and rivers. Dark gray zones correspond to areas to be harvested. Black lines are the access roads manually
designed on the left image, and GRASP solution on the right image.

heuristics ensure a good balance between harvesting costs and
construction costs, and thus generate neither too much nor too
few forest roads. Finally, solutions with lower costs than man-
ual ones are obtained in a reduced amount of time.

5. Conclusion and perspectives
This paper presented a heuristic approach for solving a net-

work design problem in the field of forestry. The problem was
modeled as a P-Forest Problem (PFP) that belongs to the cat-
egory of extensive facility location problems. It consists in
determining a set of tree structures in a graph that covers a set
of vertices so as to minimize the harvesting and construction
costs. The proposed heuristic approach for solving the PFP is
a Greedy Randomized Adaptive Search Procedure (GRASP).
This metaheuristic consists in iteratively constructing a solu-
tion and improving it using a local search procedure. A two-
step greedy construction procedure and a variable neighbor-
hood descent procedure are respectively used for the construc-
tion phase and the improvement phase of the GRASP.

Three sets of experiments were conducted to analyze the ef-
ficiency of the proposed approach. Small generated problem
instances were used to compare the GRASP with results ob-
tained by branch-and-bound. In addition, an experiment was

performed on real problem instances and aimed at evaluating
the GRASP against manually planned solutions. The GRASP
leads to significant improvements both in solution quality and
computational time in comparison to manual solutions.

The proposed approach was implemented on a decision sup-
port system and can be effectively used to help the design
of forest roads. However, due to the complexity of the stud-
ied instances, some aspects of the solutions provided by the
heuristic are not yet realistic or convenient for a direct im-
plementation of the roads. Based on observations of experts
in forestry, the main adjustments needed concern the location
of water-crossings, the adjustment of some roads to allow the
logs to be dragged in the direction of the slope, and the defini-
tion of shorter road connections to exit points. Even if specific
parts of solutions necessitate a manual edition by an expert,
the GRASP provides solutions that respect slopes, construction
difficulty and coverage constraints. Then, the heuristic ensures
a good balance between harvesting costs and road construc-
tion costs. And finally, low costs solutions are generated in a
reduced amount of time.

Future works will focus on two aspects. First, we will in-
troduce on-road transportation costs. This additional cost is
expected to improve the validity of generated solutions by pe-
nalizing long road connections. It will also improve the accu-
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racy of the evaluation of costs. Second, we will consider an
interactive heuristic approach to deal with the complexity of
the problem. Contrary to the GRASP, which is a fully auto-
mated approach, in the interactive heuristic approach the user
may contribute to the optimization process. The objective is
to exploit the problem-domain expertise of the user in order
to generate more realistic solutions that integrate aspects not
captured by the objective function.
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