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Abstract— Multi-Level Location Problems are generally con-
sidered as complex. To deal with these problems we propose an
approach based on Holonic MultiAgent Systems (HMAS). HMAS
have already proven to be a convenient way to engineer complex
systems. This approach was merged with Artificial Potential
Fields (APF) mechanims. The solution is obtained simultaneously
with the holarchy. The holarchy is thus used to exploit and control
the emergence of the solution. This solution is then evaluated to
check its relevance according to global objectives represented
thanks to a fitness function. This model was efficiently applied
to a multi-level distribution system.

I. INTRODUCTION

THE facility location1 problems have witnessed an ex-
plosive growth in the last four decades. As Krarup and

Pruzan [1] point out, this is not surprising since location policy
is one of the most profitable areas of applied systems analysis.
This is due to the importance of location decisions which are
often made at all levels of human organization. Then, such
decisions are frequently strategic since they have consequential
economic effects.

The term facility is used in its broadest sense. It refers
to entities such as plants, bus-stops, schools, hospitals, fire
stations, etc. The general problem is then the location of
new facilities to optimize some objectives, such as distance,
travel time or cost and demand satisfaction. In this paper we
are interested in the the optimization of the distance from a
demand to the nearest facility. This problem is referred to as
the continuous p-median problem.

However, location problems are often extremely difficult to
solve, especially to obtain an optimal solution (often classi-
fied as NP-Hard). Classical approaches are based on branch
and bound, greedy heuristics, genetic algorithms, etc. These
approaches are not easily adaptable to dynamic systems where
system’s constraints or data change. This is a real limitation
since most of real problems are dynamic. To deal with this
lack of flexibility and robustness, a multiagent approach is
adopted. It is known to be well suited for dynamical problems
[2], [3].

The choice of a multiagent approach provides several ad-
vantages. First, multiagent systems are well suited to model
distributed problems. In such systems, several entities coop-
erate to fulfill collective and personnal goals. Second, even if
the multiagent approach does not guarantee to find optimal
solutions, it is often able to find satisfying ones without

1Location, positioning, deployment and siting are used as synonyms

too much computational cost [4]. This paper attemps to
demonstrate the relevance of the reactive multiagent approach
for optimization in positioning problems. Then, it provides
satisfying solutions in addition to other assets as flexibility,
modularity and adaptability to open systems.

In this paper a holonic multiagent approach for multi-level
facility location problem is proposed. It is based on the self-
organization of reactive holons. From that perspective it is an
original approach.

Multi-level location problems are particularly complex and
classified as NP-Hard [5], since levels interact, influence each
other, may have antagonist objectives and specific dynamics.
The holonic paradigm and its application to multiagent sys-
tems are arising as one of the most adapted tools for the
analysis and modeling of complex systems [6], [7].

The term holon was originally introduced in 1967 by the
hungarian philosopher Arthur Koestler [8] to refer to natural
or artificial structures that are neither wholes nor parts in an
absolute sense. According to Koestler, a holon must respect
three conditions: (1) being stable, (2) having the capability of
autonomy and, (3) being able to cooperate. The stability means
that a holon can react when strong perturbations occur. The
autonomy implies that a holon is capable of self-management
in order to achieve its own goals. The cooperation aptitude
denotes that holons may work in common projects according
to shared goals with other holons or other levels of holons.
Holonic organizations have proven to be an effective solution
to several problems associated with hierarchical self-organized
structures [9], [10], [11], [12].

Our solution to deal with multi-level location problem,
combines a holonic approach to artificial potential fields based
mechanisms. Holon behavior is based on the combination of
attractive and repulsive forces. The basic idea is that micro-
scopic holon’s behavior leads to the emergence of solutions at
the macroscopic level [13]. Moreover, holonic model allows
to control this emergence between the various levels and so
facilitates the emergence of a consensus between objectives,
that may be antagonist.

The structure of this paper reflects the above reported
lines of thought. Hence, in sub-section II-A we introduce
the general facility and the multi-level location problem. Sub-
section II-B details our generic organizational framework for
holonic multiagent systems. Sub-section II-C presents the self-
organizing approach for the location problem. Then, section
III is devoted to the proposed self-organization framework
for location problems and to its application to a multi-level



distribution system. The last section gives some conclusions
and perspectives.

II. BACKGROUND

A. Location Problems Overview

In literature, the general facility location problem is con-
cerned with the determination of the optimal number, size and
geographic configuration of facilities, in such a way that a
certain criterion (or several criteria) is optimized.

Four nodal components characterize location problems [14]:
(1) a space in which demands and facilities are located, (2)
a metric that indicates distance (or other measures as time)
between demands and facilities, (3) demands, which must be
assigned to facilities, and (4) facilities that have to be located.

Three basic classes can be identified in location analysis:
continuous location, network location and discrete location
[15]. The differences between these arise from the structure of
the set of possible locations for the facilities. Hence, finding
optimal facility locations on the edges or vertices of a network
corresponds to a network location model while in discrete
location models the facilities can be placed only at a limited
number of eligible positions. Finally, continuous location
models are characterized by two essential attributes: (a) The
solution space is continuous, that is, it is feasible to locate
facilities on every point in the space. (b) Distance is measured
with a suitable metric. Typically, the Euclidean distance metric
or the Manhattan distance metric are employed.

Each of these three classes has been actively studied,
arousing intense discussions on approaches proposed to solve
location problems. This paper focuses on continuous problems
and especially on multi-level location problems.

Many practical situations involve more than one type of
facilities and therefore multi-level models have recently an
increased deal of attention [15], [16]. Researchers give several
names for this type of problems: hierarchical, multi-level,
multi-echelon, multi-stage. Generally, the designation of the
problem indicates the maximum number of levels considered:
k-hierarchical, k-level, k-echelon location problems refer to
problems with, at most, k levels of facilities. The objective
is to choose where to simultaneously locate facilities in each
level in order to optimize a global objective. This problem is
NP-hard, since it is a generalization of an NP-hard problem,
as stated in [5].

A multi-level facility location model is needed whenever
the facilities to be located can be grouped in levels. These
levels may have different characteristics i.e. offering different
services and interact with each other. So it is not possible to
locate facilities in each level independently from the others.

Several examples exist in our daily lives that show the
importance of considering multi-level facility location prob-
lems: the hierarchical health service system, the hierarchical
education system, the multi-level structure of bank and post-
offices, etc.

Various approaches were developed to tackle the different
variants of the multi-level problem. These approaches are
mostly dedicated to the static version of multi-level problem.
[17] present a branch and bound algorithm for the multi-level

uncapacitated facility location problem. Lagrangean relaxation
is used in [18] to solve a two-hierarchical uncapacitated
location-allocation problem. For the same problem [19] in-
vestigates dual-based procedures. In spite of the efficienty
of these propositions to tackle multi-level problems, they are
inexorably expensive in computation time, rarely useful for
real-size problems. Mainly they lack robustness, scalability
and adaptation to dynamic problems.

The next section is devoted to the description of a generic
framework for Holonic Multi-Agent System, which will be
applied in section III to control the emergence of a solution
in multi-level location problem.

B. A generic organizational framework for Holonic Multi-
Agent System

A holon is a self-similar structure composed of holons as
sub-structures. This hierarchical structure composed of holons
is called a holarchy. A holon can be seen, depending on the
level of observation, either as an autonomous “atomic” entity
or as an organization of holons. This duality is sometimes
called the Janus Effect2, in reference to the two faces of a
holon. A holon is a whole-part construct that is composed of
other holons, but it is, at the same time, a component of a
higher level holon. Examples of holarchies can be found in
every-day life. Probably, the most widely used example is the
human body. The body cannot be considered as a whole in an
absolute sense. It is, in fact, composed of organs, that in turn
are composed of cells, molecules, etc.

Holonic approaches have been applied to a wide range of
applications. Thus, it is not surprising that a number of models
and framework have been proposed for these systems [7], [20],
[21]. However, most of them are strongly attached to their
application domain and use specific agent architectures. In
order to allow modular and reusable modelling that minimizes
the impact on the underlying architecture, the framework is
based on an organizational approach.

We have selected the framework presented in [3], [9], [22]
based on the RIO3 meta-model [23] to represent organizations.
We have leaned for this model since it enables formal speci-
fication, animations and proofs based on the OZS formalism
[24].

In order to maintain the generic character of this framework
[3] distinguishes between two aspects that overlap in a holon.
The first is directly related to the holonic character of the
entity, i.e. a holon (super-holon) is composed of other holons
(sub-holons or members). This aspect is common to every
holon, thus called holonic aspect. The second aspect is related
to the problem that the members are trying to solve, and thus
specific to the application or the domain of application.

A super-holon is an entity in its own right, but it is com-
posed by its members. So, we need to consider how members
organize and manage the super-holon. This constitutes the first
aspect of the holonic framework. To describe this aspect, [3]
defines a particular organization called Holonic Organization.

2Roman god with two faces. Janus was the god of gates and doorways,
custodian of the universe and god of beginnings
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This organization represents a moderated group in terms of
roles and their interactions. To describe the status of a member
inside a super-holon, it defines three main roles: Head, Part
and Multi-Part. The Head role players are the representatives
or moderators of the group, and a part of the visible interface.
For the represented members we define two different roles.
The Part role represents members belonging to only one super-
holon. The Multi-Part role is played by sub-holons shared by
more than one super-holon.

In this approach, every super-holon must contain at least one
instance of the Holonic Organization. Every sub-holon must
play at least one role of this organization. This role defines its
status in the composition of the super-holon.

Super-holons are created to satisfy objectives, and to per-
form certain tasks. To achieve these goals and tasks, the
members must interact and coordinate their actions. The
framework also offers means to model this second aspect
of the super-holons. These goal-dependent interactions are
modeled using organizations, called Internal Organizations,
since they are specific to each holon and its goals/tasks.
The behaviors and interactions of the members can thus be
described independently of their holonic roles as a component
of the super-holon. The set of internal organizations can be
dynamically updated to describe additional behaviors. The
only strictly required organization is the Holonic organization
that describes member’s status in the super-holon.

The framework is also concerned with a third important
aspect of a Holonic MAS, the dynamics. Dynamics are
inherent characteristics of MASs. The framework considers
in particular two of the most attractive characteristics of
Holonic MASs: how to regroup holons to create a super-
holons or join an exisiting super-holon, and self-organization.
This requires holons to merge with other holons according
to their ability to work together. To achieve that, the model
is based on two important concepts: Affinity and Satisfaction.
Affinity measures, according to the application’s objectives,
the aptitude of two holons to work together toward some
shared objectives. It must be defined according to the domain
of the application. Satisfaction measures the progress of the
holon toward the achievement of its current goal. These two
measures are intended to guide holons in selecting the most
appropriate collaborators.

The framework guarantees a clear separation between the
management of the super-holon and the goal-specific behaviors
and favors modularity and re-usability. It also provides means
to deal with dynamical aspect and allows to refine generic
model according to the application domain. Section III will
introduce a specialization of this framework to deal with
optimization in multi-level location problem. The next sub-
section details the proposed self-organizing approach for the
location problems.

C. A Self-organized reactive approach for the continuous
location problem

Our model draws from the artificial potential fields approach
which is a possible manner to build self-organized systems.
This approach as well as the reactive one are presented in the
next two sections, the proposed model is detailed in II-C.3.

1) The reactive approach: The reactive approach arose in
computer science in the 80’s with the work of M. Minsky
[25]. Minsky constructs a thesis for a way in which human
intelligence in all its complexity can be built up, layer by layer,
from the interactions of simple parts called agents, who are
themselves mindless. He describes the postulated interactions
as constituting a “Society of Mind”. This thesis matured in
the end of 80’s, when researchers where interested in the
functioning of insects societies (termites, ants, bees). They
showed that these reactive agents are able to collectively solve
complex problems. This phenomenon observable at the macro
level is called self-organization.

Self-organization exists in many natural systems and es-
pecially in insect societies. Such systems are composed of
simple entities, for instance ants, which can solve complex
problems without any global control [26]. Their organization
results from the numerous interactions between agents and
their environment. It is the environment that guides the agent
behaviors and the whole system organization according to the
so called stigmergy principle [13].

2) The artificial potential fields technique: Self-
organization has been used to define decentralized algorithm
to deal with path finding problems (ant algorithm [27]),
collective tasks such as boxpushing [28], navigation [29],
foraging with robots, etc. Most of these works are based
either on digital pheromones, as inspired by ants, or on
Artificial Potential Fields (APF). We adopt this second one
because it is well suited to deal with spatial constraints as in
the location problems.

The APF approach has several inspirations: physical, bio-
logical, etc. The concept was introduced by Kurt Lewin in his
book “Principles of topological psychology” [30]. The basic
idea is that human behavior is controlled by a force field
generated by objects or situations with positive or negative
values or valences.

During the past decade, potential field theory has gained
popularity among researchers in the field of autonomous robots
[31] and especially in robot motion planning thanks to their
capability to act in continuous domains in real-time. By
assigning repulsive force fields to obstacles and an attractive
force field to the desired destination, a robot can follow a
collision-free path via the computation of a motion vector from
the superposed force fields [28]. In [32], artificial potential
fields are used to tackle cooperation and conflict resolution
between situated reactive agents.

3) A self-organizing multiagent model: In the proposed
approach, facilities are modeled as reactive agents. These
agents are situated in a finite and continuous environment. The
behavior of an agent or a facility consists, first, in optimizing
its position considering the perceived demands. Second, in
considering interactions with other agents in order to reach
the collective problem solving. These two features allow to
deduce the holon satisfaction and affinity which are presented
in sub-section III-A.

a) Local demand satisfaction: The agent’s behavior con-
sists in minimizing its distance from the perceived demand.
The key idea is that a demand induces attraction forces which
are applied on the agent. Considering one demand point, an



Fig. 1. Attractions lead the agent to the weighted barycenter of demands

attractive force is defined from the agent towards the demand.
It is expressed as a vector the intensity of which is proportional
to the demand weight and to the distance between the agent
and the demand. Formally, for an agent A perceiving a demand
D with weight WD:

→
F D/A= WD .

−−→
AD (1)

The influence of the attraction decreases when the agent
moves towards the demand. Thus, if the agent attains the
demand the attraction behavior is inhibited.

For the set of perceived demands, the influence on an agent
is defined as the sum of all induced forces. Formally, the
local attraction force undergone by an agent A is computed
as follows:

→
F demands/A=

nX
i=1

→
F i/A

n
(2)

Parameter n is the number of demands perceived by the agent
A through its attraction radius ra (n = 5 in Fig.1). The demand
is indexed by i.

Obviously, the radius ra should be considered as a variable.
It can range from infinity to a calculated best value (specific
to the problem). But in our real experiments we had a fixed
radius imposed by the requirements. For this reason, in the
following we will only deal with fixed radius.

The agent moves to the weighted barycenter of the demands,
which is known to be the minimum average distance to several
close weighted points [33], [34]. For example, if an agent is
subject to two attractive forces (from two different demands),
it will be more attracted towards the biggest demand. Then,
it will move towards a balance point. This point is defined as
the place where the two attraction forces are equilibrated.

When we have several agents, attraction forces may bring
the agents to the same location. In such a case the process
is sub-optimal since several agents cover the same demand.
To prevent this process, repulsive forces are introduced to the
model.

b) Local coordination: To prevent agents from having
the same locations, repulsive forces between them are intro-
duced. These forces concern close agents, i.e. situated in a
given radius, defined as the repulsion radius (rr in Fig.2).

The force intensity is defined as inversely proportional to
the inter-agent distance.

Formally the repulsive force induced by an agent B on an
agent A is expressed as follow:

→
RB/A=

−→
BA‚‚‚−→AB

‚‚‚2
(3)

Then, the local repulsive force undergone by an agent A is
computed as follows:

Fig. 2. Repulsions between agents A and B lead them to keep away

→
Ragents/A=

mX
j=1

→
Rj/A

m
(4)

Parameter m is the number of agents perceived by the agent A.
These agents are indexed by j. Figure 2 illustrates this repulsive
process between two agents.

Moreover, such repulsive forces allow to respect constraints
on minimal distances separating facilities which are present in
many facility location applications.

c) Collective solving: The agent behavior is defined as
the weighted sum of both local attraction and repulsion forces.
Formally, for an agent A, it is expressed as follows:

−−−→
Move = α

→
F demands/A +(1− α)

→
Ragents/A (5)

The coefficient α allows to favour either the attraction or the
repulsion.

We now consider the whole system, where several facilities
must optimize their positioning to cover numerous demands. In
the self-organizing approach, no global control is used. Agents
are created and randomly distributed in the environment and
act following the defined individual behavior.

The collective solving process is presented in Algorithm 1.

Algorithm 1 Collective solving process
1: Initialization of Agent positions
2: while Fitness in progress do
3: for all Agents do
4: Attraction computation
5: Repulsion computation
6: Move computation
7: Move execution
8: end for
9: Fitness computation

10: end while

III. APPLICATION TO A MULTI-LEVEL FACILITY LOCATION
PROBLEM

A. Holonic self-organization framework

In this section, we detail how to define Affinity and Satisfac-
tion (cf. sub-section II-B) to specialize the holons dynamics to
solve the multi-level facility location problem. This dynamics
stems from both attraction and repulsion forces.

We define two main kinds of holon’s architecture: Demand
Holon (the lowest level of the holarchy) and Facility Holons.
Each holon will always search to join a super-holon to be
supplied. Its basic behavior consists in integrating the nearest
super-holon that it perceives. The affinity between a holon of
level n and a holon of level n + 1 is thus defined according
to the inverse of the distance separating them: the greater the



Fig. 3. The structure of the holarchy

distance, the lower the affinity. Otherwise, the affinity between
two holons of the same level is defined according to the inverse
of the distance to their super-holon.

In this problem the holarchy is mapped to a simple hierarchy
where each level corresponds to a specific kind of holons. Each
demand is assigned to a Demand Holon, these holons will then
search to integrate a Facility Holon in charge of supplying
them. Similarly, Facility Holons are then grouped into Facility
holons (upper level), and so on. The whole process leads to
the creation of the entire holarchy.

Figure 3 illustrates these various kinds of holons and a
possible resulting holarchy.

The satisfaction of each holon must be defined. So, the self-
satisfaction Si (cf. equation 6) of a holon is defined according
to the distance separating it from its super-holon.

Si =
1

d2(XSH , Xi)
(6)

With Xi the position of the holon i and XSH the position of
its super-holon.

Thanks to Affinity, Satisfaction and Attraction-Repulsion
forces (cf. sub-section II-C) we are able to define the behavior
of each holon and thus create the holarchy. The solution is
emerging from the structure of this final holarchy.

To evaluate this solution, the fitness of the entire holarchy
must be computed. This global fitness F (cf. equation 7) is
obtained according to the fitness of each level in the holarchy,
which is dependent on the fitness FH(k,l) of each super-holon
H(k,l) of the corresponding level l (cf. equation 8).

F =
hX

l=1

nlX
k=1

FH(k,l) (7)

With h the height of the holarchy and nl the number of
holon in the level l.

FH(k,l) =

nX
m=1

M(m,l−1) ∗ d2(XH(k,l) , X(m,l−1))

nX
m=1

M(m,l−1)

(8)

With M(m,l−1) the weight associated to the mth member of
H(k,l) (level l−1), XH(k,l) the position of the kth super-holon
of level l and X(m,l−1) the position of the mth member of
H(k,l).

Fig. 4. Agents location for iterations 10 and 100

The solution of the multi-level location problem is obtained
when each holon has reached a stable state, so that the sum of
forces is null. This happens when the attraction forces from
holon of the lower level l− 1 and of the upper level l +1 and
the repulsion forces from other holons of the same level l are
null.

Finally, thanks to these forces, we obtain a satisfying
distribution of agents for each level of the holarchy.

B. Experimental Results on a multi-level distribution system

The potential field-based approach has already been applied
to the classical version of location problem (1-level problem).
A computational study has been presented in [35]. In this sub-
section we report the application of the previous model to a
2-levels distribution system.

In this system the lowest level corresponds to the Demands,
level 1 coincides with the Depots and the highest one with the
Factories.

Table I details the obtained results for different configura-
tions (various number of demands, depots and factories). In
this example, demands are randomly distributed over a 2D
Euclidian space.

Demand Depot Factory Best found
(level 0) (level 1) (level 2) solution

100 10 1 7477,72
100 20 2 5869,9
200 10 1 13839,45
200 15 2 11284,58
200 20 4 10513,04
500 10 2 35860,98
500 20 4 25468,75
500 50 6 19600,98

TABLE I
EXPERIMENTAL RESULTS OF 2-LEVELS DISTRIBUTION SYSTEM

Figure 4 illustrates the evolution of holons locations dur-
ing the optimization process. It corresponds to the second
configuration presented in the table I. Obviously, the holons
repartition after 100 iterations is better than that presented
after 10 iterations. This observation is confirmed by the fitness
value.

The major objective of this paper consists in illustrating the
relevance of the combination between the holonic approach



and the APF-based holon architecture. The self-similar struc-
ture of the holarchy allows to dynamically add new levels
without any significant modifications.

The main adavantage of this model is its self-adaptation
aptitude and its capability to integrate problem’s dynamics.
Thus, the APF-based holon architecture enables to rapidely
manage addition or suppression of entities (demand or facility)
on any level without disturbing the system behavior.

IV. CONCLUSION

In this paper a multi-level location problem is presented.
It consists in simultaneously locate facilities in each level
to fulfill a specified global objective. These levels interact,
influence each other, and may have antagonist objectives. To
deal with these problems a self-organization framework that
combines a holonic approach to an APF-based mechanism is
introduced.

Holon’s behavior is defined as the conjunction of attrac-
tive/repulsive forces and satisfaction/affinity concepts. So,
from an initial siting, the proposed approach allows holons
to dynamically relocate themselves, in reaction to attractive
and repulsive forces stemming from the demands and other
holons and according to their satisfaction levels.

The underlying idea is that microscopic holon’s behavior
leads to the emergence of solutions at the macroscopic level.
Moreover, holonic model allows to exploit this emergence
between the various levels and so facilitates the emergence
of a consensus between objectives.

This work confirms the growing potential of HMAS to
tackle complex problems, and further works will be devoted
to the adaptation of this model to other optimization domains.
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